作者单位
摘要
北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
在PIN光电探测器(PIN-PD)结构的垂直方向上集成垂直腔面发射激光器(VCSEL)结构单元,实现了收发一体式工作的集成光电芯片对,可用于进一步提高光互连的性能。该集成光电芯片可以同时对两个波段进行收发一体工作,一端进行中心波长为805 nm的光信号的发送和中心波长为850 nm的光信号的接收,另一端进行中心波长为850 nm的光信号的发送和中心波长为805 nm的光信号接收。仿真优化805 nm波长处光信号发送端的结构与性能,理论分析结构中VCSEL单元和PIN-PD单元工作时的电学隔离和光学解耦,最终证实本结构可以同时进行收发一体的工作。
光通信 光电集成 光电探测器 激光器 垂直腔面发射激光器 光互连 
光学学报
2019, 39(8): 0806003
Author Affiliations
Abstract
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
An integrated optoelectronic chip pair, which can transmit and receive optical signals simultaneously, is proposed in this Letter. The design and optimization of its key structure, the vertical cavity surface emitting laser’s distributed Bragg reflector, are presented. Analysis is also done for its influence on the integrated chip’s performance. Moreover, the chip pair’s performance under dynamic conditions is analyzed. Their 3 dB modulation bandwidths are higher than 10 GHz, and their 3 dB photo-response bandwidths are around 23 GHz. Their applications will further improve the performances of the optical interconnects.
130.3120 Integrated optics devices 130.0250 Optoelectronics 250.7260 Vertical cavity surface emitting lasers 
Chinese Optics Letters
2019, 17(4): 041301
Author Affiliations
Abstract
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
In this Letter, a pair of integrated optoelectronic transceiving chips is proposed. They are constructed by integrating a vertical cavity surface emitting laser unit above a positive-intrinsic-negative photodetector unit. One of the transceiving chips emits light at the wavelength of 848.1 nm with a threshold current of 0.8 mA and a slope efficiency of 0.81 W/A. It receives light between 801 and 814 nm with a quantum efficiency of higher than 70%. On its counterpart, the other one of the transceiving chips emits light at the wavelength of 805.3 nm with a threshold current of 1.1 mA and a slope efficiency of 0.86 W/A. It receives light between 838 and 855 nm with a quantum efficiency of higher than 70%. The proposed pair of integrated optoelectronic transceiving chips can work full-duplex with each other, and they can be applied to single fiber bidirectional optical interconnects.
130.3120 Integrated optics devices 130.0250 Optoelectronics 250.7260 Vertical cavity surface emitting lasers 
Chinese Optics Letters
2018, 16(9): 091301
Author Affiliations
Abstract
Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
Pure zinc blende structure GaAs/AlGaAs axial heterostructure nanowires (NWs) are grown by metal organic chemical vapor deposition on GaAs(111) B substrates using Au-catalyzed vapor-liquid-solid mechanism. Al adatom enhances the influence of diameters on NWs growth rate. NWs are grown mainly through the contributions from the direct impingement of the precursors onto the alloy droplets and not so much from adatom diffusion. The results indicate that the droplet acts as a catalyst rather than an adatom collector.
纳米线 闪锌矿 GaAs AlGaAs 160.4236 Nanomaterials 310.3840 Materials and process characterization 
Chinese Optics Letters
2011, 9(4): 041601
作者单位
摘要
北京邮电大学信息光子学与光通信教育部重点实验室, 北京 100876
利用金辅助的金属氧化物化学汽相沉积法(MOCVD)在汽液固(VLS)生长机制下GaAs (111) B衬底上生长了GaAs纳米线。研究了三个生长温度(500 ℃,530 ℃,560℃)对纳米线形貌及晶体质量的影响。在较低生长温度时,纳米线生长速率与纳米线直径无关,且纳米线上下直径分布均匀。随着温度的增高,纳米线成明显的圆锥状。当温度升高时,相对较粗的纳米线,长度缩短,这是因为在高温时VLS生长被抑制;对于相对较细的纳米线,长度是先减少后增大,这是由于在温度升高时Ga原子的扩散作用增大。温度的升高还导致了纳米线晶体质量的下降。低温时只有少量缺陷在相对较细的纳米线中出现;对于相对较粗的纳米线,其晶体结构为纯的闪锌矿结构。温度增高导致了Au-Ga合金纳米颗粒的不稳定,从而造成了缺陷的增加。
材料 纳米线 汽液固机制 砷化镓 金属氧化物化学汽相沉积 
光学学报
2010, 30(s1): s100107
作者单位
摘要
北京邮电大学 光通信与光电子学研究院, 北京 100876
报道了一种Si基长波长、窄线宽光探测器。该探测器采用异质外延生长技术, 首先在Si衬底上生长高质量的GaAs基滤波器, 接着生长InP基PIN光探测结构。其中的GaAs/Si异质外延生长, 采用中间刻槽工序实现了高质量、无裂纹的GaAs基外延层。制备的集成器件, 在波长1573.2 nm处, 获得了1.1 nm的光谱线宽以及9%的量子效率, 其中吸收层厚度为300 nm。
光电子学 光探测器 异质外延 波长选择 光电子集成 
中国激光
2009, 36(s1): 356
作者单位
摘要
北京邮电大学光通信与光波技术教育部重点实验室, 北京 100876
利用低压金属有机化学气相沉积技术, 开展InP/GaAs异质外延实验。由450 ℃生长的低温GaAs层与超薄低温InP层组成双异变缓冲层, 并进一步在正常InP外延层中插入In1-xGaxP/InP(x=7.4%)应变层超晶格。在不同低温GaAs缓冲层厚度、应变层超晶格插入位置及应变层超晶格周期数等条件下, 详细比较了InP外延层(004)晶面的X射线衍射谱, 还尝试插入双应变层超晶格。实验中, 1.2 μm和2.5 μm厚InP外延层的ω扫描曲线半峰全宽仅370 arcsec和219 arcsec; 在2.5 μm厚InP层上生长了10周期In0.53Ga0.47As/InP 多量子阱, 室温PL谱峰值波长位于1625 nm, 半峰全宽为60 meV。实验结果表明, 该异质外延方案有可能成为实现InP-GaAs单片光电子集成的一种有效途径。
光电子学 异质外延 低温GaAs 低温InP 应变层超晶格 
中国激光
2008, 35(s2): 68
Author Affiliations
Abstract
1 Key Laboratory of Optical Communication and Lightwave Technologies, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876
2 Institute of Continuing Education, Beijing University of Posts and Telecommunications, Beijing 100876
Using two-step method InP epilayers were grown on GaAs(100) substrates by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). X-ray diffraction (XRD) and room-temperature (RT) photoluminescence (PL) were employed to characterize the quality of InP epilayer. The best scheme of growing InP/GaAs(100) heterostructures was obtained by optimizing the initial low-temperature (LT) InP growth conditions, investigating the effects of thermal cycle annealing (TCA) and strained layer superlattice (SLS) on InP epilayers. Compared with annealing, 10-period Ga0.1In0.9P/InP SLS inserted into InP epilayers can improve the quality of epilayers dramatically, by this means, for 2.6-micron-thick heteroepitaxial InP, the full-widths at half-maximum (FWHMs) of XRD 'omega' and 'omega'-2'theta' scans are 219 and 203 arcsec, respectively, the RT PL spectrum shows the band edge transition of InP, the FWHM is 42 meV. In addition, the successful growth of InP/In0.53Ga0.47As MQWs on GaAs(100) substrates indicates the quality of device demand of InP/GaAs heterostructures.
金属有机物气相外延 异质外延生长 InP/GaAs异质结构 X-射线衍射 160.6000 Semiconductor materials 160.4760 Optical properties 310.6860 Thin films, optical properties 
Chinese Optics Letters
2007, 5(7): 422

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!