电光与控制, 2016, 23 (6): 84, 网络出版: 2021-01-28  

不规则地形对ADS-B地面站信号覆盖影响分析

Simulation Analysis to Influence of Irregular Topography on ADS-B Ground Station Signal Coverage
作者单位
1 中国民航大学智能信号和图像处理天津市重点实验室,天津300300
2 广州民航职业技术学院,广州 510403
3 中国民航科学技术研究院,北京 100028
4 中国民用航空中南地区空中交通管理局湖北分局,武汉430000
摘要
传统基于可视域分析方法获得的地面站信号覆盖常常无法准确反映系统的实际监视性能。提出一种针对不规则地形的广播式自动相关监视(ADS-B)地面站信号覆盖分析方法。首先针对不规则地形信道特点, 推导了Longley-Rice模型的具体仿真算法, 提出利用该模型模拟航空无线信道; 仿真符合ADS-B规范标准的天线, 计算信号在自由空间的辐射距离; 然后结合由地物遮挡引起的视线截止距离, 进行综合比较得出最终覆盖范围; 最后选取某地为例进行研究和分析, 与其他算法比较, 用实际数据对预测范围进行验证。实验结果表明, 不规则地形是影响地面站覆盖的关键因素, Longley-Rice模型可以准确模拟信号衰减。本文方法为地面站选址提供理论支持。
Abstract
The coverage of ground station obtained via the traditional method based on the visual domain analysis can not accurately describe the practical performance of the system coverage. An irregular topography ADS-B ground station signal coverage analysis method is proposed in this paper. First, according to the characteristics of the irregular topography channel, specific simulation algorithm of Longley-Rice model is derived, and the model is used to simulate the ground-to-air communications channel. Second, the antenna that meets the requirements of ADS-B standard is simulated, and the radiation range of signal in free space is calculated out. Then, analysis is made to the sightline range cut-off caused by terrain shading. Finally, taking a certain area as an example, comparison is made with other algorithms by verifying the forecast range with the actual data. Experimental results show that: 1)The irregular topography is the key factor influencing the ground station signal coverage; and 2)Longley-Rice model can accurately simulate signal attenuation. The method in this paper provides a theoretical support for the location selecting of ground station.
参考文献

[1] 康南, 刘永刚. ADS-B技术在我国的应用和发展[J]. 中国民用航空, 2012, 131(11): 36-38. (KANG N, LIU Y G. Application and development of ADS-B technology in China[J]. China Civil Aviation, 2012, 131(11): 36-38. )

[2] MCCALLIE D, BUTTS J, MILLS R. Security analysis of the ADS-B implementation in the next generation air transportation system[J]. International Journal of Critical Infrastructure Protection, 2011, 4(2): 78-87.

[3] 王鲁杰. 中国民航应优先发展 ADS-B 应用技术[J]. 中国民用航空, 2006, 61(1): 27-30. (WANG L J. China should put priority on development of ADS-B technology[J]. China Civil Aviation, 2006, 61(1): 27-30. )

[4] PARKINSON A. Space-based ADS-B: a small step for technology a giant leap for ATM [C]//Tyrrhenian International Workshop on Digital Communications(TIWDC/ESAV), IEEE, 2011: 159-164.

[5] 张青竹, 张军, 刘伟. 民航空管应用ADS-B的关键问题分析[J]. 电子技术应用, 2007, 33(9): 72-74. (ZHANG Q Z, ZHANG J, LIU W. Investigation for main problem of ADS-B implementation in ATM[J]. Application of Electronic Technique, 2007, 33(9): 72-74. )

[6] MOODY J C, LASCARA B J, WILSON W J, et al. Assessing flight information and traffic data services uplinked to flight test aircraft[C]//Integrated Communications, Navigation and Surveillance Conference (ICNS), IEEE, 2012: O7-1-O7-14.

[7] 张智强. ADS-B地面站的规划与建设[J]. 指挥信息系统与技术, 2011, 2(4): 29-30. (ZHANG Z Q. Planning and construction of ADS-B ground station[J]. Command Information System and Technology, 2011, 2(4): 29-30. )

[8] OHIRA T, HIRAI T, TOMISATO S, et al. A study of mobile path loss estimation models for a sloping terrain area in cellular systems[C]//The 18th Asia Pacific Confe-rence on Communications(APCC), IEEE, 2012: 472-477.

[9] 程擎. 中国实施 ADS-B 监视的地面站部署分析[J]. 电讯技术, 2012, 52(8): 1227-1231. (CHENG Q. Ground station deployment analysis of implementing ADS-B surveillance in China[J]. Telecommunication Engineering, 2012, 52(8): 1227-1231. )

[10] 汪玥, 苏志刚, 高益寰, 等. 二次监视雷达覆盖性能分析[J]. 信号处理, 2009, 25(8A): 607-610. (WANG Y, SU Z G, GAO Y H, et al. Performance analysis for coverage of secondary surveillance radar[J]. Journal of Signal Processing, 2009, 25(8A): 607-610. )

[11] KOSTIC A, RANCIC D. Radar coverage analysis in virtual GIS environment[C]//TELSIKS 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, IEEE, 2003: 721-724.

[12] 邱航, 陈雷霆, 蔡洪斌. 复杂环境影响下雷达探测范围三维可视化[J]. 电子科技大学学报, 2010, 39(5): 731-736. (QIU H, CHEN L T, CAI H B. 3D visualization of radar detection range in complicated environment[J]. Journal of University of Electronic Science and Technology of China, 2010, 39(5): 731-736. )

[13] 曹博, 刘文评, 沈笑云. 航空无线信道建模与仿真[J]. 电光与控制, 2015, 22(5): 93-96. (CAO B, LIU W P, SHEN X Y. Modeling and simulation of aviation wireless channel[J]. Electronics Optics & Control, 2015, 22(5): 93-96. )

[14] 王豪. 大区域多尺度雷达遮蔽角计算关键技术研究与实现[D]. 郑州:解放军信息工程大学, 2011. (WANG H. Research and realization on key technologies of radar defilade angles calculation on large field and multi scales[D]. Zhengzhou:The PLA Information Engineering University, 2011. )

[15] 张银涛, 郑林华, 王祖良. 高超声速巡航导弹信道建模与仿真分析[J]. 科学技术与工程, 2010, 10(29): 7160-7164. (ZHANG Y T, ZHENG L H, WANG Z L. Building channel model and simulation analysis on hypersonic cruise missiles[J]. Science Technology and Engineering, 2010, 10(29): 7160-7164. )

[16] 潘群华, 成建波, 徐明, 等. 一种宽带航空无线信道的模拟方法[J]. 通信技术, 2010, 43(3): 4-6. (PAN Q H, CHENG J B, XU M, et al. Simulation on wide-band aeronautical channel emulation[J]. Communications Technology, 2010, 43(3): 4-6. )

[17] 徐红艳, 尉明明, 冯玉珉. 海上移动通信预测模型的选择[J]. 北京交通大学学报, 2005, 29(2): 65-68. (XU H Y, WEI M M, FENG Y M. Selecting prediction model for sea mobile communication[J]. Journal of Beijing Jiaotong University, 2005, 29(2): 65-68. )

刘文评, 曹博, 刘志刚, 刘坤, 唐志虎. 不规则地形对ADS-B地面站信号覆盖影响分析[J]. 电光与控制, 2016, 23(6): 84. LIU Wen-ping, CAO Bo, LIU Zhi-gang, LIU Kun, TANG Zhi-hu. Simulation Analysis to Influence of Irregular Topography on ADS-B Ground Station Signal Coverage[J]. Electronics Optics & Control, 2016, 23(6): 84.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!