光学学报, 2018, 38 (3): 0330001, 网络出版: 2018-03-20   

基于M壳层辐射的Si K边X射线吸收近边结构谱实验研究

Experimental Study on Si K-Edge X-Ray Absorption Near-Edge Structure with M-Shell Radiation
作者单位
中国工程物理研究院流体物理研究所, 四川 绵阳 621900
摘要
基于纳秒高功率激光辐照高原子序数靶材产生的等离子体M壳层X射线辐射, 利用椭圆柱面晶体谱仪进行薄膜单晶Si样品的K边X射线吸收近边结构谱(XANES)静态实验研究;通过详细介绍实验方案, 分析椭圆柱面晶体谱仪的原理, 得到谱仪的位置-能量色散关系, 并对Au、Lu、Yb、Dy、Ta、Co 这6种靶材产生的等离子体X射线光谱进行比较。结果表明:通过比较这6种靶材产生的等离子体X射线光谱后发现, 在Si的K边(1839 eV)附近, Lu、Yb、Dy靶材的激光等离子体M壳层辐射相对其他几种靶材具有较高的光谱亮度, 对应的XANES的信噪比较好;实验获得的XANES与FEFF9.0软件计算结果基本符合, 验证了单发获得的静态实验数据是可靠的。
Abstract
With M-shell X-ray radiation from plasma produced by nanosecond high power laser irradiating on high atomic number targets, the experimental study on Si K-edge X-ray absorption near-edge structure (XANES) is carried out with an elliptic cylinder crystal spectrometer. By describing the experiment setup in detail, and analyzing the principle of elliptic cylinder crystal spectrometer, the position-energy dispersion relation of the spectrometer is obtained, and the laser plasma X-ray spectra from six targets of Au, Lu, Yb, Dy, Ta, and Co are compared. The results show that by comparing the laser plasma X-ray spectra from six targets of Au, Lu, Yb, Dy, Ta and Co, we find that the M-shell radiations from Lu, Yb, and Dy are more brilliant than the others in the vicinity of Si K-edge (1839 eV), and the corresponding signal to noise of XANES is much better. The XANES obtained from experiment and calculation by FEFF9.0 software are in good agreement with each other, indicating that the static experimental result of single shot is reliable.
参考文献

[1] 彭明生, 李迪恩. 矿物和玻璃中NaK-边的同步辐射XANES研究[J]. 矿物学报, 2001, 21(2): 165-168.

    Peng M S, Li D E. Coordination and local structure of Na in silicate minerals and glasses[J]. Acta Mineralogica Sinica, 2001, 21(2): 165-168.

[2] 唐军, 刘忠良, 任鹏, 等. Mn掺杂SiC磁性薄膜的结构表征[J]. 物理学报, 2010, 59(7): 4774-4780.

    Tang J, Liu Z L, Ren P, et al. Structural characterization of Mn doped SiC magnetic thin films[J]. Acta Physica Sinica, 2010, 59(7): 4774-4780.

[3] Ankudinov A L, Ravel B, Rehr J J, et al. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure[J]. Physical Review B, 1998, 58(12): 7565-7576.

[4] Bunker G, Stern E A. Experimental study of multiple scattering in X-ray-absorption near-edge structure[J]. Physical Review Letters, 1984, 52(22): 1990-1993.

[5] Lytle F W, Greegor R B, Panson A J. Discussion of X-ray-absorption near-edge structure: Application to Cu in the high-Tc superconductors La1.8Sr0.2CuO4 and YBa2Cu3O7[J]. Physical Review B, 1988, 37(4): 1550-1562.

[6] Lee P L, Beno M A, Jennings G, et al. An energy dispersive X-ray absorption spectroscopy beamline, X6A, at NSLS[J]. Review of Scientific Instruments, 1994, 65(1): 1-6.

[7] Zhao Y, Yang J M, Yang G H, et al. K-shell photoabsorption edge of strongly coupled matter driven by laser-converted radiation[J]. Physical Review Letters, 2013, 111(15): 155003.

[8] Bressler C, Milne C, Pham V T, et al. Femtosecond XANES study of the light-induced spin crossover dynamics in an iron(II) complex[J]. Science, 2009, 323(5913): 489-492.

[9] Harmand M, Ravasio A, Mazevet S, et al. X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments[J]. Physical Review B, 2016, 92(2): 024108.

[10] Bauche-Arnoult C, Bauche J, Luc-Koenig E, et al. Dielectronic recombination process in laser-produced tantalum plasmas[J]. Physical Review A, 1989, 39(3): 1053-1065.

[11] Dorchies F, Fedorov N, Lecherbourg L, et al. Experimental station for laser-based picosecond time-resolved X-ray absorption near-edge spectroscopy[J]. Review of Scientific Instruments, 2015, 86(7): 073106.

[12] Benuzzi-Mounaix A, Dorchies F, Recoules V, et al. Electronic structure investigation of highly compressed aluminum with K edge absorption spectroscopy[J]. Physical Review Letters, 2011, 107(16): 165006.

[13] Denoeud A, Mazevet S, Guyot F, et al. High-pressure structural changes in liquid silica[J]. Physical Review E, 2016, 94(3): 031201.

[14] 袁迪, 高勋, 李百慧, 等. 激光诱导等离子体屏蔽冲击波演化过程[J]. 激光与光电子学进展, 2016, 53(7): 071403.

    Yuan D, Gao X, Li B H, et al. Evolution process of laser induced plasma shielding shock wave[J]. Laser & Optoelectronics Progress, 2016, 53(7): 071403.

[15] 韩丰明, 徐世珍, 宋文亮, 等. 纳秒激光对铝合金和不锈钢的烧蚀特性研究[J]. 中国激光, 2016, 43(2): 0203005.

    Han F M, Xu S Z, Song W L, et al. Study of nanosecond laser ablation on aluminum and stainless steel targets[J]. Chinese Journal of Lasers, 2016, 43(2): 0203005.

[16] 王波鹏, 粟敬钦, 曾小明, 等. 参量荧光脉宽的理论与实验研究[J]. 光学学报, 2016, 36(5): 0519001.

    Wang B P, Su J Q, Zeng X M, et al. Theoretical and experimental study on parametric fluorescence pulse width[J]. Acta Optica Sinica, 2016, 36(5): 0519001.

[17] Levy A, Dorchies F, Fourment C, et al. Double conical crystal X-ray spectrometer for high resolution ultrafast X-ray absorption near-edge spectroscopy of Al K edge[J]. Review of Scientific Instruments, 2010, 81(6): 063107.

[18] Denoeud A, Benuzzi-Mounaix A, Ravasio A, et al. Metallization of warm dense SiO2 studied by XANES spectroscopy[J]. Physical Review Letters, 2014, 113(11): 116404.

[19] Harmand M, Dorchies F, Peyrusse O, et al. Broad M-band multi-keV X-ray emission from plasmas created by short laser pulses[J]. Physics of Plasmas, 2009, 16(6): 063301.

[20] Gauthier J C, Monier P, Audebert P, et al. X-ray spectroscopy of high-Z materials[J]. Laser and Particle Beams, 1986, 4(3/4): 421-425.

[21] Rehr J J, Albers R C. Theoretical approaches to X-ray absorption fine structure[J]. Reviews of Modern Physics, 2000, 72(3): 621-654.

谭伯仲, 阳庆国, 刘冬兵, 母健, 胡厚胜, 李牧, 李俊. 基于M壳层辐射的Si K边X射线吸收近边结构谱实验研究[J]. 光学学报, 2018, 38(3): 0330001. Tan Bozhong, Yang Qingguo, Liu Dongbing, Mu Jian, Hu Housheng, Li Mu, Li Jun. Experimental Study on Si K-Edge X-Ray Absorption Near-Edge Structure with M-Shell Radiation[J]. Acta Optica Sinica, 2018, 38(3): 0330001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!