光学技术, 2018, 44 (1): 117, 网络出版: 2018-02-01  

像质补偿在高分辨物镜精密装调中的应用

The application of image quality compensation methods in fine assembly of the high resolution lens
作者单位
1 北京理工大学 光电学院光电成像技术与系统教育部重点实验室, 北京 100081
2 中国科学院 光电技术研究所, 成都 610209
摘要
根据高分辨物镜各个光学元件的实测数据, 应用轴向补偿和旋转补偿法, 在仿真精密装调过程中得到了物镜轴向补偿器的最优值和各元件的最佳旋转角度。仿真结果表明, 在97.7%的置信区间内, 物镜各视场波像差RMS值从补偿前的0.087λ(λ=632.8 nm)减小到了补偿后的0.040 λ。依据获得的参数对物镜进行了装调实验, 结果表明, 激光干涉仪测得的物镜各视场波像差RMS值介于0.050~0.082λ之间, 基本达到了衍射极限的分辨率要求, 验证了像质补偿方法的有效性。
Abstract
According to the actual data of the high resolution lens all optical element, the axial and rotational compensation method, in the process of simulation precision with adjustable, the optimal value of the objective axial compensator and the best rotation angle of each element are obtained. The simulation results show that in the confidence interval of 97.7%, the RMS value of each field of the objective mirror is reduced from 0.087λ(λ=632.8 nm)to 0.040λ. According to the simulation to obtain the parameters are used for alignment experiment of the objective. The experiment results show that the wavefront error RMS value of the full field of view of the system tested by ZYGO interferometer is between 0.050 and 0.082λ, which almost meet the requirements of the diffraction limit and verify the validity of the optimization methods.
参考文献

[1] 陈姣,焦明印,常伟军,等 近紫外-可见光宽波段复消色差显微物镜设计[J]. 应用光学, 2011,6(32):1098-1102.

    Chen Jiao, Jiao Mingyin, Chang Weijun, et al. Optical design of apochromatic microscope objective for near Ultraviolet-visible wide spectrum[J]. Journal of Applied Optics,2011,6(32):1098-1102.

[2] 胡大伟,李艳秋,刘晓林. 超高数值孔径Schwarzschild投影光刻物镜的光学设计[J]. 光学学报, 2013,33(1):0122004.

    Hu Dawei, Li Yanqiu, Liu Xiaolin. Optical design of hyper numerical-aperture schwarzschild projection lithographic lens[J]. Acta Optica Sinica, 2013, 33(1):0122004.

[3] 明名,王建立,张景旭,等. 大口径望远镜光学系统的误差分配与分析[J]. 光学精密工程, 2009,1(17):104-108.

    Ming Ming, Wang Jianli, Zhang Jingxu, et al. Error budget and analysis for optical system in large telescope[J]. Optics and Precision Engineering,2009,1(17):104-108.

[4] 刘丽萍,王骐,李琦. 折衍混合式相干激光雷达天线系统的设计[J]. 激光与红外,2002,32(1):15-17.

    Liu Liping, Wang Qi, Li Qi. A design scheme of simplifying coherent laser radar antenna system[J]. Laser & Infrared,2002,32(1):15-17.

[5] 林来兴. 小卫星高分辨率成像系统[J]. 上海航天, 2011,28(6):54-57.

    Lin Laixing. High-resolution imaging system of small satellite[J]. Aerospace Shanghai,2011,28(6):54-57.

[6] Yaegashi H, Oyama K, Hara A, et al. Noble approaches on double patterning process toward sub 15nm[J]. SPIE, 2013,8685(18):86850M.

[7] Steve Slonaker. Further pursuit of correlation between lens aberration content and imaging performance[J]. SPIE, 2001, 5040:1581-1590.

[8] Liu Xiaolin, Li Yanqiu, Liu Ke. Automatic figure errors balancing method for catoptrics and catadioptric lenses[J]. Optical Engineering,2014,53(3):035101-1-6.

[9] 徐伟才. 投影光刻物镜的光学设计与像质补偿[D]. 长春: 中国科学院长春光学精密机械与物理研究所,2011.

    Xu Weicai. Optical design and imaging performance compensation for the lithographic lens[D]. Changchun: Changchun Instltute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,2011.

[10] Hironori Ikezawa, Yasuhiro Ohmura. A hyper-NA projection lens for ArF immersion exposure tool[J]. SPIE,2006, 6154: 615421.

[11] Hirotaka Kohno, Yuichi Shibazaki.Latest performance of immersion scanner S620D with the stream light platform for the double patterning generation[J]. SPIE, 2010,7640:76401.

季振波, 刘克, 李艳秋, 章明. 像质补偿在高分辨物镜精密装调中的应用[J]. 光学技术, 2018, 44(1): 117. JI Zhenbo, LIU Ke, LI Yanqiu, ZHANG Ming. The application of image quality compensation methods in fine assembly of the high resolution lens[J]. Optical Technique, 2018, 44(1): 117.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!