光学 精密工程, 2013, 21 (1): 108, 网络出版: 2013-03-05   

大时间热响应常数投影物镜的超高精度温度控制

High precision temperature control for projection lens with long time thermal response constant
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130022
2 空军航空大学, 吉林 长春 130021
摘要
为满足高分辨率光刻机控制大时间热响应常数投影物镜温度时响应速度和超高精度的要求, 设计了前馈——串级水冷投影物镜温控系统。该系统以物镜为主控对象、冷却循环水为副控对象。针对物镜的慢动态温度变化特征, 采用模型预测控制作为外环主控制算法; 针对冷却水远传回路的纯时滞特性, 采用带Smith预估器的PID控制作为内环副控制算法; 为解决光刻机在不同工况下激光光路对物镜温度的严重扰动, 引入前馈补偿控制激光热扰动。最后, 在不同控制结构和热干扰条件下, 进行了模拟物镜温度控制实验。结果显示,物镜温度稳态误差曲线在±0.01 ℃内波动。实验证明该系统极大地提高了物镜的温度收敛速度,具有较强的抗干扰能力, 能满足物镜的超高精度温度控制要求。
Abstract
A feedforword-cascade water cooling control system is presented to meet the requirements of a projection lens in a high-resolution optical lithography for the fast convergence and high performance temperature control. The system takes an objective as the primary control object and the cooling water as a secondary control object. According to the slow dynamic temperature response characteristics of the projection lens, model predictive control is adopted as the outer loop main control algorithm. On the basis of the large time-delay problems of a cooling water circuit, the PID control with a Smith predictor is used as the inner loop auxiliary control algorithm. To overcome the serious disturbance in optical lithography at different operating status, the feedforward compensation is introduced to control the laser thermal interference. Finally, the temperature control experiment for the objective is simulated under the conditions of different control structures and thermal interferences. The results show that the stable-state error curve of the objective is in the ±0.01 ℃. The control experimental results demonstrate that the method has fast convergence and strong anti-interference, and meets the requirements of the projection lens for ultra-precision temperature control.
参考文献

[1] BARNEY M C, WAYNE G R, PAUL M. Dynamic in-situ temperature profile monitoring of a deep-UV post-exposure bake process[J]. SPIE, 2005, 4689: 1133-1142.

[2] VALIGI P, FRAVOLINI M L, FICOLA A.Improved temperature control of a batch reactor with actuation constraints[J]. Control Engineering Practice, 2006, 14 (7):783-797.

[3] CHINGCH T, SHUICH,TAI-YUWANG, et al.. Stochastic model reference predictive temperature control with integral action for an industrial oil-cooling process [J]. Control Engineering Practice, 2009,07(9):302-310.

[4] ZHAO Y, TRUMPER D L, HELIMANN R K, Optimization and temperature mapping of an ultra-high thermal stability environmental enclosure [J]. Precision Engineering, 2010,34 (1):164-170.

[5] 张津,姚汉民,陈旭南,等. 亚半微米光刻投影物镜温度补偿控制及算法研究[J]. 微细加工技术,1999(2):71-78.

    ZHANG J,YAO H M,CHENG X N, et al.. Control and algorithm investigation on temperature compensation of sub-micron projection lithography objective [J]. Microfabrication Technology, 1999(2):71-78.(in Chinese)

[6] 聂宏飞,李小平,张玲莉. 光刻机投影物镜的温度控制算法[J]. 中国机械工程, 2008,19(10):1135-1139.

    NIE H F,LI X P,ZHANG L L, Temperature control algorithm for optical lithography projection lens[J]. China Mechanical Engineering, 2008,19(10):1135-1139. (in Chinese)

[7] BRDYS M A, GROCHOWSKI M, GMINSKI, et al.. Hierarchical predictive control of integrated wastewater treatment systems [J]. Control Engineering Practice, 2008,16(6), 751-767.

[8] ANDREAS H, BART S, HANS H. Model predictive control for optimal coordination of ramp metering and variable speed limits [J]. Transportation Research Part C, 2005,13(3):185-209.

[9] 李欣欣,王文,陈子辰. 超磁致伸缩致动器的广义预测—多模PID控制[J]. 光学 精密工程, 2010,18(2),412-419.

    LI X X,WANG W,CHEN Z CH.Generalized predictive-multimode PID control for giant magnetostrictive actuators [J]. Opt. Precision Eng., 2010,18(2),412-419.(in Chinese)

[10] 彭小强,戴一帆,唐宇.基于灰色预测控制的磁流变抛光液循环控制系统[J]. 光学 精密工程, 2007,15(1),101-105.

    PENG X Q,DAI Y F,TANG Y. Circulatory system for MR fluid based on gray forecast control algorithm [J]. Opt. Precision Eng., 2007,15(1),101-105.(in Chinese)

[11] SILVIO S, CESARE F. Dynamic system identification and model-based fault diagnosis of an industral gas turbine protoype [J].Mechatronics, 2006,16(6) 341-363.

[12] YAO K, GAO R, ALLGOWER F. Barrel temperature control during operation transition in injection molding [J]. Control Engineering Practice, 2008,16(11):1259-1264.

[13] 张斌,李洪文,郭立红,等.变结构PID在大型望远镜速度控制中的应用[J]. 光学 精密工程, 2010,18(7),1613-1619.

    ZHANG B,LI H W,GUO L H, et al.. Application of variable structure PID in velocity control for large telescope [J]. Opt. Precision Eng., 2010,18(7),1613-1619.(in Chinese)

秦硕, 巩岩, 袁文全, 杨怀江. 大时间热响应常数投影物镜的超高精度温度控制[J]. 光学 精密工程, 2013, 21(1): 108. QIN Shuo, GONG Yan, YUAN Wen-quan, YANG Huai-jiang. High precision temperature control for projection lens with long time thermal response constant[J]. Optics and Precision Engineering, 2013, 21(1): 108.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!