发光学报, 2017, 38 (1): 63, 网络出版: 2017-02-09   

InGaN/GaN 多量子阱LED载流子泄漏与温度关系研究

Temperature-dependent Carrier Leakage in InGaN/GaN Multiple Quantum Wells Light-emitting Diodes
刘诗涛 1,2,3,*王立 1,2,3伍菲菲 1,2,3杨祺 1,2,3何沅丹 1,2,3张建立 1,2,3全知觉 1,2,3黄海宾 1,2,3
作者单位
1 南昌大学 材料科学与工程学院, 江西 南昌330031
2 南昌大学 国家硅基LED工程技术研究中心, 江西 南昌330047
3 南昌大学 光伏研究院, 江西 南昌330031
摘要
通过测量光电流,直接观察了InGaN/GaN量子阱中载流子的泄漏程度随温度升高的变化关系。当LED温度从300 K升高到360 K时,在相同的光照强度下,LED的光电流增大,说明在温度上升之后,载流子从量子阱中逃逸的数目更多,即载流子泄漏比例增大。同时,光电流的增大在激发密度较低的时候更为明显,而且光电流随温度的增加幅度与激发光子的能量有关。用量子阱-量子点复合模型能很好地解释所观察到的实验现象。实验结果直接证明,随着温度的升高,InGaN/GaN量子阱中的载流子泄漏将显著增加,而且在低激发密度下这一效应更为明显。温度升高导致的载流子泄漏增多是InGaN多量子阱LED发光效率随温度升高而降低的重要原因。
Abstract
By measuring the photocurrent, we directly observed the relationship between the degree of carrier leakage and the temperature in InGaN multiple quantum wells. When LEDs working temperature rises from room temperature to 360 K, the photocurrent increases under the same light intensity. The increase of the samples photocurrent means larger amount of carrier leakage when the temperature rises. At the same time, it is found that the carriers leak more in a lower density, and the increase of photocurrent is related to the emission photon energy. The model of quantum well-quantum dot can explain the phenomena observed in the experiment, such as the rise of temperature shows little influence on carrier leakage when the excitation light wavelength is relatively short, and causes more carrier leakage when the emission light wavelength is longer. Also, this model can well explain that the carriers leak more in a lower density and leak less in a higher density when the temperature rises. The experiment results suggest that the carrier leakage is the dominant mechanism for T-droop effect when the temperature rises from 300 to 360 K.
参考文献

[1] NAKAMURA S, MUKAI T, SENOH M. High-power GaN P-N junction blue-light-emitting diodes [J]. Jpn. J. Appl. Phys., 1991, 30(12A):L1998-L2001.

[2] 金尚忠, 张树生, 侯民贤. 白光照明LED灯温度特性的研究 [J]. 光源与照明, 2004(4):6-8.

    JIN S Z, ZHANG S S, HOU M X. The research of temperature characteristic in white light LED [J]. Lamps Light., 2004(4):6-8. (in Chinese)

[3] CAO K W, FU B L, LIU Z, et al.. Anomalous luminescence efficiency enhancement of short-term aged GaN-based blue light-emitting diodes [J]. J. Semicond., 2016, 37(1):014008.

[4] KIM M H, SCHUBERT M F, DAI Q, et al.. Origin of efficiency droop in GaN-based light-emitting diodes [J]. Appl. Phys. Lett., 2007, 91(18):183507-1-3.

[5] MEYAARD D S, LIN G B, SHAN Q F, et al.. Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes [J]. Appl. Phys. Lett., 2011, 99(25):251115-1-2.

[6] MUKAI T, YAMADA M, NAKAMURA S. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes [J]. Jpn. J. Appl. Phys., 1999, 38(7A):3976-3981.

[7] YANG Y, CAO X A, YAN C H. Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes [J]. IEEE Trans. Electron Dev., 2008, 55(7):1771-1775.

[8] HADER J, MOLONEY J V, KOCH S W, et al.. Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes [J]. Appl. Phys. Lett., 2010, 96(22):221106-1-3.

[9] HADER J, MOLONEY J V, KOCH S W. Temperature-dependence of the internal efficiency droop in GaN-based diodes [J]. Appl. Phys. Lett., 2011, 99(18):181127-1-3.

[10] SHEN Y C, MUELLER G O, WATANABE S, et al.. Auger recombination in InGaN measured by photoluminescence [J]. Appl. Phys. Lett., 2007, 91(14):141101-1-3.

[11] MEYAARD D S, SHAN Q F, CHO J, et al.. Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities [J]. Appl. Phys. Lett., 2012, 100(8):081106-1-3.

[12] HUH C, SCHAFF W J, EASTMAN L F, et al.. Temperature dependence of performance of InGaN/GaN MQW LEDs with different indium compositions [J]. IEEE Electron Dev. Lett., 2004, 25(2):61-63.

[13] JIANG R, LU H, CHEN D J, et al. Temperature-dependent efficiency droop behaviors of GaN-based green light-emitting diodes [J]. Chin. Phys. B, 2013, 22(4):047805-1-4.

[14] PLOCH N L, EINFELDT S, FRENTRUP M, et al.. Solar blind UV region and UV detector development objectives [J]. Semicond. Sci. Technol., 2013, 28(12):2558-2562.

[15] JANI O, FERGUSON I, HONSBERG C, et al.. Design and characterization of GaN/InGaN solar cells [J]. Appl. Phys. Lett., 2007, 91(13):132117-1-3.

[16] LANG J R, YOUNG N G, FARRELL R M, et al.. Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells [J]. Appl. Phys. Lett., 2012, 101(18):181105-1-5.

[17] SILVACO INC. ATLAS Users Manual 2012 [EB/OL]. (2013-10-02). http://www.silvaco.com.

[18] LAI K Y, LIN G J, CHEN C Y, et al.. Origin of hot carriers in InGaN-Based quantum-well solar cells [J]. IEEE Electron Dev. Lett., 2011, 32(2):179-181.

[19] ODONNELL K P, MARTIN R W, MIDDLETON P G. Origin of luminescence from InGaN diodes [J]. Phys. Rev. Lett., 1999, 82(1):237-240.

[20] KRESTNIKOV I L, LEDENTSOV N N, HOFFMANN A, et al.. Quantum dot origin of luminescence in InGaN-GaN structures [J]. Phys. Rev. B, 2002, 66(15):155310-1-5.

[21] CHANG H J, CHEN C H, CHEN Y F, et al.. Direct evidence of nanocluster-induced luminescence in InGaN epifilms [J]. Appl. Phys. Lett., 2005, 86(86):021911-1-3.

[22] SUN Q, YAN W, FENG M X, et al.. GaN-on-Si blue/white LEDs: epitaxy, chip, and package [J]. J. Semicond., 2016, 37(4):044006.

[23] SANTI C D, MENEGHINI M, GRASSAM L, et al.. Role of defects in the thermal droop of InGaN-based light emitting diodes [J]. J. Appl. Phys., 2016, 119(9):094501.

刘诗涛, 王立, 伍菲菲, 杨祺, 何沅丹, 张建立, 全知觉, 黄海宾. InGaN/GaN 多量子阱LED载流子泄漏与温度关系研究[J]. 发光学报, 2017, 38(1): 63. LIU Shi-tao, WANG Li, WU Fei-fei, YANY Qi, HE Yuan-dan, ZHANG Jian-li, QUAN Zhi-jue, HUANG Hai-bin. Temperature-dependent Carrier Leakage in InGaN/GaN Multiple Quantum Wells Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2017, 38(1): 63.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!