光学学报, 2011, 31 (7): 0711002, 网络出版: 2011-06-28   

基于数字微镜器件的压缩感知关联成像研究 下载: 1085次

Ghost Imaging via Compressive Sampling Based on Digital Micromirror Device
作者单位
中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
摘要
将数字微镜器件(DMD)应用于压缩感知(CS)关联成像,在该成像方案中,只需用无空间分辨能力的桶探测器,并结合相应的算法就能得到物体的像;将此成像方案应用于多光谱成像,仅需用线列探测器就能得到物体多光谱像,简化了多光谱成像探测的光电记录过程。通过对关联成像和CS理论的介绍阐明了成像原理。在实验平台上搭建演示装置,分别用强度关联算法和CS算法计算得到物体像,通过比较表明CS算法提取信息的效率更高;且实验表明在透镜口径足够大时,成像系统的分辨率由DMD面元大小决定。在原成像装置上,对桶探测器接收的光强信号进行谱分辨测量,线列探测器记录各光谱信号,利用CS关联成像方法得到物体多光谱像。
Abstract
A digital micromirror device (DMD) is introduced to the ghost imaging via compressive sampling (CS). In this scheme, the image of object can be obtained using the bucket detector which has no spatial resolution. If the imaging scheme is applied to the multi-spectral imaging, multi-spectral images of object can be obtained using a linear array detector, which reduces the complexity of detector in imaging. The principle of ghost imaging is clarified with the correlated imaging the theory of CS. According to the imaging principle, the experimental demonstration device is assembled, and the object′s image is achieved accurately in the experiment. Ghost imaging and ghost imaging CS are compared to show that the latter has a better performance. Meanwhile, according to the experimental results, the resolution of the imaging system is decided by the size of unit on the DMD when the aperture of lens is big enough. Based on this imaging system, the multi-spectral imaging is carried out. The intensities at different wavelengths are recorded by the linear array detector, and the multi-spectral images of object are achieved in the experiment.
参考文献

[1] M. D′Angelo, Y. H. Shih. Quantum imaging[J]. Laser Phys. Lett., 2005, 2(12): 567~596

[2] J. H. Shapiro. Computational ghost imaging[J]. Phys. Rev. A, 2008, 78(6): 1802~1806

[3] Y. Bromber, O. Katz, Y. Silberberg. Ghost imaging with a single detector[J]. Phys. Rev. A, 2009, 79(5): 3840~3844

[4] T. B. Pitman, Y. H. Shih, D. V. Strekalov et al.. Optical imaging by means of two-photo quantum entanglement[J]. Phys. Rev. A, 1995, 52(5): R3429~R3432

[5] A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienka et al.. Entangled-photon fourier optics[J]. J. Opt. Soc. Am. B, 2002,19(5): 1174~1184

[6] A. Gatti, E. Brambilla, M. Bache et al.. Correlated imaging, quantum and classical[J]. Phys. Rev. A, 2004, 70(1): 013802

[7] A. Gatti, E. Brambilla, M. Bache et al.. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Phys. Rev. Lett., 2004, 93(9): 3602~3606

[8] Jing Cheng, Shensheng Han. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Phys. Rev. Lett., 2004, 92(9): 093903~093906

[9] Dezhong Cao, Jun Xiong, Kaige Wang. Geometrical optics in correlated imaging systems[J]. Phys. Rev. A, 2005, 71(1): 013801

[10] R. S. Bennink, S. J. Bentley, R. W. Boyd. “Two-photon” coincidence imaging with a classical source[J]. Phys. Rev. Lett., 2002, 89(11): 113601

[11] A. Valencia, G. Scarcelli, M. D′Anglo et al.. Two-photon imaging with thermal light[J]. Phys. Rev. Lett., 2005, 94(6): 063601

[12] F. Ferri, D. Magatti, A. Gatti et al.. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Phys. Rev. Lett., 2005, 94(18): 183602

[13] Minghui Zhang, Qing Wei, Xia Shen et al.. Lensless Fourier-transform ghost imaging with classical incoherent light[J]. Phys. Rev. A, 2007, 75(2): 021803

[14] 沈夏, 张明辉, 刘红林 等. 脉冲式赝热光源的实验研究[J]. 中国激光, 2009, 36(11): 2893~2898

    Shen Xia, Zhang Minghui, Liu Honglin et al.. Research on the pulsed pseudo-thermal light[J]. Chinese J. Lasers, 2009, 36(11): 2893~2898

[15] 张明辉, 魏青, 沈夏 等. 基于统计光学的无透镜鬼成像数值模拟和实验验证[J]. 光学学报, 2007, 27(10): 1858~1866

    Zhang Minghui, Wei Qing, Shen Xia et al.. Statistical optics based numerical modeling of ghost imaging and its experimental approval[J]. Acta Optica Sinica, 2007, 27(10): 1858~1866

[16] 贺拾贝, 沈夏, 王慧 等. 热光场无分束器非局域成像研究[J]. 光学学报, 2010, 30(11): 3332~3335

    He Shibei, Shen Xia, Wang Hui et al.. Ghost imaging without beamsplitter in thermal optical field[J]. Acta Optica Sinica, 2010,30(11): 3332~3335

[17] Da Zhang, Yan-Hua Zhai, Ling-An Wu et al.. Correlated two-photon imaging with true thermal light[J]. Opt. Lett., 2005, 30(18): 2354~2356

[18] Xi-Han Chen, Qian Liu, Kai Hong et al.. Lensless ghost imaging with true thermal light[J]. Opt. Lett., 2009, 34(5): 695~697

[19] Yangjian Cai, Shi-Yao Zhu. Ghost interference with partially coherent radiation[J]. Opt. Lett., 2004, 29(23): 2716~2718

[20] Jun Xiong, De-Zhong Cao, Feng Huang et al.. Experimental observation of classical subwavelength interference with a pseudothermal light source[J]. Phys. Rev. Lett., 2005, 94(17): 173601~173604

[21] Kaige Wang, De-Zhong Cao. Subwavelength coincidence interference with classical thermal light[J]. Phys. Rev. A, 2004, 70(4): 041801

[22] Wenlin Gong, Shensheng Han. Lens ghost imaging with thermal light: from the far field to the near field[J]. Phys. Lett. A, 2010, 374(36): 3723~3725

[23] Wenlin Gong, Shensheng Han. A method to improve the visibility of ghost images obtained by thermal light[J]. Phys. Lett. A, 2010, 374(8): 1005~1008

[24] D. Donoho. Compressed sensing[J]. IEEE Trans. Information Theory, 2006, 52(4): 1289~1306

[25] E. Candès, J. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. Information Theory, 2006, 52(2): 489~509

[26] E. Candes, M. Wakin. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21~30

[27] J. Romberg. Imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 14~20

[28] J. Haupt, R. Nowak. Signal reconstruction from noisy random projections[J]. IEEE Trans. Information Theory, 2006, 52(9): 4036~4048

[29] O. Katz, Y.Bromberg, Y.Silberberg. Compressive ghost imaging[J]. Appl. Phys. Lett., 2009, 95(13): 131110

[30] Hui Wang, Shensheng Han. Fourier-transform ghost imaging based on compressive sampling algorithm[OL]. arXiv. Physics Optics, 2010, 1003. 6057v1

[31] Wenlin Gong, Shensheng Han. Super-resolution ghost imaging via compressive sampling reconstruction[OL]. arXiv. Quant-ph, 2009, 0910. 4823v1

[32] D.Duley, W. Duncan, J. Slaughter. Emerging digital micromirror device(DMD) application[C]. SPIE, 2003, 4985: 14~25

[33] Mário A. T. Figueiredo, Robert D. Nowak, Stephen J. Wright. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE J. Sel. Top. Signal Processing, 2007, 1(4): 586~598

[34] Y. Shechtman, S. Gazit, A. Szameit et al.. Super-resolution and reconstruction of sparse images carried by incoherent light[J]. Opt. Lett., 2010, 35(8): 1148~1150

陆明海, 沈夏, 韩申生. 基于数字微镜器件的压缩感知关联成像研究[J]. 光学学报, 2011, 31(7): 0711002. Lu Minghai, Shen Xia, Han Shensheng. Ghost Imaging via Compressive Sampling Based on Digital Micromirror Device[J]. Acta Optica Sinica, 2011, 31(7): 0711002.

本文已被 36 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!