激光与光电子学进展, 2019, 56 (13): 130001, 网络出版: 2019-07-11   

三维激光雷达在无人车环境感知中的应用研究 下载: 3349次

Application Research of There-Dimensional LiDAR in Unmanned Vehicle Environment Perception
作者单位
1 陆军工程大学石家庄校区车辆与电气工程系, 河北 石家庄 050003
2 中国人民解放军63963部队, 北京 100072
引用该论文

张银, 任国全, 程子阳, 孔国杰. 三维激光雷达在无人车环境感知中的应用研究[J]. 激光与光电子学进展, 2019, 56(13): 130001.

Yin Zhang, Guoquan Ren, Ziyang Cheng, Guojie Kong. Application Research of There-Dimensional LiDAR in Unmanned Vehicle Environment Perception[J]. Laser & Optoelectronics Progress, 2019, 56(13): 130001.

参考文献

[1] 王世峰, 戴祥, 徐宁, 等. 无人驾驶汽车环境感知技术综述[J]. 长春理工大学学报(自然科学版), 2017, 40(1): 1-6.

    Wang S F, Dai X, Xu N, et al. Overview on environment perception technology for unmanned ground vehicle[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2017, 40(1): 1-6.

[2] 刘健. 基于三维激光雷达的无人驾驶车辆环境建模关键技术研究[D]. 合肥: 中国科学技术大学, 2016.

    LiuJ. Research on key technologies in unmanned vehicle driving environment modelling based on 3D LiDAR[D]. Hefei: University of Science and Technology of China, 2016.

[3] 刘曰. 基于组合毫米波雷达的智能车环境感知方法[D]. 烟台: 烟台大学, 2016.

    LiuY. Environment perception for intelligent vehicle based on combined millimeter-wave radar[D]. Yantai: Yantai University, 2016.

[4] 王宁. 基于机器视觉的前方车辆检测与跟踪[D]. 成都: 西南交通大学, 2018.

    WangN. Machine vision based front vehicle detection and tracking[D]. Chengdu: Southwest Jiaotong University, 2018.

[5] 谌彤童. 三维激光雷达在自主车环境感知中的应用研究[D]. 长沙: 国防科学技术大学, 2011.

    Chen TT. Research on 3D LiDAR-based environment perception for ALV[D]. Changsha: National University of Defense Technology, 2011.

[6] 何勇, 蒋浩, 方慧, 等. 车辆智能障碍物检测方法及其农业应用研究进展[J]. 农业工程学报, 2018, 34(9): 21-32.

    He Y, Jiang H, Fang H, et al. Research progress of intelligent obstacle detection methods of vehicles and their application on agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 21-32.

[7] Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley: the robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692.

[8] Montemerlo M, Becker J, Bhat S, et al. Junior: the Stanford entry in the Urban Challenge[J]. Journal of Field Robotics, 2008, 25(9): 569-597.

[9] DouillardB, UnderwoodJ, MelkumyanN, et al. Hybrid elevation maps: 3D surface models for segmentation[C]∥2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan, China. New York: IEEE, 2010: 1532- 1538.

[10] XiaoL, DaiB, Liu DX, et al. CRF based road detection with multi-sensor fusion[C]∥2015 IEEE Intelligent Vehicles Symposium (IV), June 28-July 1, 2015, Seoul, Korea. New York: IEEE, 2015: 192- 198.

[11] Lu W L, Murphy K P, Little J J, et al. A hybrid conditional random field for estimating the underlying ground surface from airborne LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2913-2922.

[12] 雷钊, 习晓环, 王成, 等. 决策树约束的建筑点云提取方法[J]. 激光与光电子学进展, 2018, 55(8): 082803.

    Lei Z, Xi X H, Wang C, et al. Building point clouds extraction from airborne LiDAR data based on decision tree method[J]. Laser & Optoelectronics Progress, 2018, 55(8): 082803.

[13] SamplesM, Michael R J. Learning a real-time 3D point cloud obstacle discriminator via bootstrapping[EB/OL]. [2018-11-05]. http:∥citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.385.6290&rep=rep1&type=pdf.

[14] 任国亭, 王新晴, 黄杰, 等. 基于支持向量机的激光雷达可通行区域检测[J]. 计算机应用, 2017, 37(S2): 82-84, 106.

    Ren G T, Wang X Q, Huang J, et al. Detection of accessible area by laser radar based on support vector machine[J]. Journal of Computer Applications, 2017, 37(S2): 82-84, 106.

[15] McDaniel M W, Nishihata T, Brooks C A, et al. . Terrain classification and identification of tree stems using ground-based LiDAR[J]. Journal of Field Robotics, 2012, 29(6): 891-910.

[16] SpinelloL, SiegwartR. Human detection using multimodal and multidimensional features[C]∥2008 IEEE International Conference on Robotics and Automation, May 19-23, 2008, Pasadena, CA, USA. New York: IEEE, 2008: 3264- 3269.

[17] AzimA, AycardO. Detection, classification and tracking of moving objects in a 3D environment[C]∥2012 IEEE Intelligent Vehicles Symposium, June 3-7, 2012, Alcala de Henares, Spain. New York: IEEE, 2012: 802- 807.

[18] Zhang XM, Wan WG, LiX, et al. Mean shift clustering segmentation and RANSAC simplification of color point cloud[C]∥2014 International Conference on Audio, Language and Image Processing, July 7-9, 2014, Shanghai, China. New York: IEEE, 2014: 837- 841.

[19] 郝刚涛, 杜小平, 宋建军, 等. 基于权值优化分块自适应灰度-距离Markov随机场的无扫描3D激光雷达距离图像重构[J]. 光学学报, 2015, 35(8): 0811001.

    Hao G T, Du X P, Song J J, et al. Reconstruction of scannerless 3D LiDAR range image based on the adaptive block grayscale-range Markov random filed model with optimizing weights[J]. Acta Optica Sinica, 2015, 35(8): 0811001.

[20] 蔡荣太, 朱鹏. 基于马尔科夫随机场的多特征人脸跟踪算法[J]. 激光与光电子学进展, 2017, 54(2): 021002.

    Cai R T, Zhu P. Face tracking with multi-feature based on Markov random field[J]. Laser & Optoelectronics Progress, 2017, 54(2): 021002.

[21] Byun J, Na K I, Seo B S, et al. Drivable road detection with 3D point clouds based on the MRF for intelligent vehicle[J]. Field and Service Robotics, 2015, 105: 49-60.

[22] 吴倩倩, 蔡艳. 基于高斯过程回归与马尔科夫随机场的三维深度图像重构算法[J]. 应用激光, 2017, 37(6): 881-887.

    Wu Q Q, Cai Y. 3D reconstruction algorithm based on Gaussian process regression and Markov random field[J]. Applied Laser, 2017, 37(6): 881-887.

[23] HimmelsbachM, Hundelshausen FV, Wuensche HJ. Fast segmentation of 3D point clouds for ground vehicles[C]∥2010 IEEE Intelligent Vehicles Symposium, June 21-24, 2010, San Diego, CA, USA. New York: IEEE, 2010: 560- 565.

[24] 王肖, 王建强, 李克强, 等. 智能车辆3-D点云快速分割方法[J]. 清华大学学报(自然科学版), 2014, 54(11): 1440-1446.

    Wang X, Wang J Q, Li K Q, et al. Fast segmentation of 3-D point clouds for intelligent vehicles[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(11): 1440-1446.

[25] Asvadi A, Premebida C, Peixoto P, et al. 3D LiDAR-based static and moving obstacle detection in driving environments: an approach based on voxels and multi-region ground planes[J]. Robotics and Autonomous Systems, 2016, 83: 299-311.

[26] KrizhevskyA, SutskeverI, Hinton GE. ImageNet classification with deep convolutional neural networks[C]∥The 25th International Conference on Neural Information Processing Systems, December 3-6, 2012, Lake Tahoe, Nevada. USA: Curran Associates Inc., 2012, 1: 1097- 1105.

[27] GirshickR, DonahueJ, DarrellT, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 2014: 580- 587.

[28] MaturanaD, SchererS. 3D convolutional neural networks for landing zone detection from LiDAR[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA), May 26-30, 2015, Seattle, WA, USA. New York: IEEE, 2015: 3471- 3478.

[29] LiB. 3D fully convolutional network for vehicle detection in point cloud[C]∥2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 24-28, 2017, Vancouver, BC, Canada. New York: IEEE, 2017: 1513- 1518.

[30] EngelckeM, RaoD, Wang DZ, et al. Vote3Deep: fast object detection in 3D point clouds using efficient convolutional neural networks[C]∥2017 IEEE International Conference on Robotics and Automation (ICRA), May 29 June 3, 2017, Singapore. New York: IEEE, 2017: 1355- 1361.

[31] MaturanaD, SchererS. VoxNet: a 3D convolutional neural network for real-time object recognition[C]∥2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 28-October 2, 2015, Hamburg, Germany. New York: IEEE, 2015: 922- 928.

[32] YangB, Luo WJ, UrtasunR. PIXOR: real-time 3D object detection from point clouds[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 2018: 7652- 7660.

[33] Zeng Y M, Hu Y, Liu S C, et al. RT3D: real-time 3-D vehicle detection in LiDAR point cloud for autonomous driving[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3434-3440.

[34] Wu BC, WanA, Yue XY, et al. SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]∥2018 IEEE International Conference on Robotics and Automation (ICRA), May 21-25, 2018, Brisbane, QLD, Australia. New York: IEEE, 2018: 1887- 1893.

[35] CaltagironeL, ScheideggerS, SvenssonL, et al. Fast LiDAR-based road detection using fully convolutional neural networks[C]∥2017 IEEE Intelligent Vehicles Symposium (IV), June 11-14, 2017, Los Angeles, CA, USA. New York: IEEE, 2017: 1019- 1024.

[36] BeltránJ, GuindelC, Moreno FM, et al. BirdNet: a 3D object detection framework from LiDAR information[C]∥2018 21st International Conference on Intelligent Transportation Systems (ITSC), November 4-7, 2018, Maui, HI, USA. New York: IEEE, 2018: 3517- 3523.

[37] MinemuraK, LiauH, MonrroyA, et al. LMNet: real-time multiclass object detection on CPU using 3D LiDAR[C]∥2018 3rd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), July 21-23, 2018, Singapore. New York: IEEE, 2018: 28- 34.

[38] Charles RQ, SuH, Mo KC, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 2017: 77- 85.

[39] Charles RQ, LiY, HaoS, Leonidas J G. Pointnet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. ( 2017-06-07)[2018-12-01]. https:∥arxiv.org/abs/1706. 02413.

[40] ZhouY, TuzelO. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 2018: 4490- 4499.

[41] Geiger A, Lenz P, Stiller C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.

[42] Huang XY, Cheng XJ, Geng QC, et al. The ApolloScape dataset for autonomous driving[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 18-22, 2018, Salt Lake City, UT, USA. New York: IEEE, 2018: 1067- 10676.

张银, 任国全, 程子阳, 孔国杰. 三维激光雷达在无人车环境感知中的应用研究[J]. 激光与光电子学进展, 2019, 56(13): 130001. Yin Zhang, Guoquan Ren, Ziyang Cheng, Guojie Kong. Application Research of There-Dimensional LiDAR in Unmanned Vehicle Environment Perception[J]. Laser & Optoelectronics Progress, 2019, 56(13): 130001.

本文已被 11 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!