激光与光电子学进展, 2014, 51 (2): 022302, 网络出版: 2014-01-17  

GaN{11-22}半极性面上生长InGaN/GaN多量子阱的研究 下载: 624次

Study on the Growth of InGaN/GaN Multiple Quantum Wells on GaN {11-22} Semipolar Plane
作者单位
江南大学理学院, 江苏 无锡 214122
摘要
利用选择性横向外延技术生长{11-22}半极性面GaN模板,并利用半极性面模板生长InGaN/GaN多量子阱结构。结果表明,生长出的GaN模板由半极性面{11-22}面和c面组成,多量子阱具有390 nm和420 nm的双峰发光特性,局域阴极发光(CL)测试表明390 nm附近的发光峰来源于半极性面上的量子阱发光,而420 nm左右的发光峰源于c面量子阱发光。c面量子阱发光相对于斜面量子阱发光发生显著红移是因为在选择性横向外延生长过程中,In组分相比Ga较易从掩模区域向窗口中心区域迁移,形成了中心高In组分的c面量子阱,而半极性面上InGaN/GaN多量子阱量子限制斯塔克效应相比于极性面会减弱,此外,相同生长条件下半极性面的生长速率低于极性c面的生长速率。
Abstract
Selective area epitaxy is applied to grow GaN {11-22} semipolar plane template, followed by InGaN/GaN multiple quantum wells (MQWs) growth. The results indicate that the GaN template is composed of the {11-22} side facet and planer c plane, and the MQWs show dual-color emission. Local cathodoluminescence reveals that the 390 nm emission peak originates from the MQWs on semipolar plane, while the 400 nm emission peak results from the MQWs on c plane. The large red-shift in emission wavelength for c plane MQWs compared with that of {11-22} semipolar plane MQWs is due to the indium enrichment originating from additional source supply due to the surface migration effect and lateral vapor-phase diffusion during selective area epitaxy. Another important reason is the reduced polarization effect InGaN/GaN MQWs on semipolar plane. At the same time, the growth rate of the semipolar plane is lower than that of the polar c plane under the same conditions.
参考文献

[1] S Nakamura, T Mukai, M Senoh, et al.. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes [J]. Appl Phys Lett, 1994, 64(13): 1687-1689.

[2] A K Viswanath, J I Lee, S T Kim, et al.. Growth of good quality InGaN multiple quantum wells by MOCVD [J]. J Cryst Growth, 2004, 260(3-4): 322-326.

[3] K S Ranaiah, Y K Su, S J Chang, et al.. Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition [J]. Appl Phys Lett, 2004, 85(3): 401-403.

[4] 梁 亮,牛萍娟,于莉媛. 电子束辐照对GaN基蓝光LED性能的影响[J].激光与光电子学进展, 2010, 47(10): 102301.

    Liang Liang, Niu Pingjuan, Yu Liyuan. Influence of electron beam irradiation on GaN-based blue LED [J]. Laser & Optoelectronics Progess, 2010, 47(10): 102301.

[5] 陈莹亮, 吕毅军, 高玉琳, 等. 交流发光二极管光电特性的研究[J]. 光学学报, 2010, 30(12): 3586-3591.

    Chen Yingliang, Lü Yijun, Gao Yulin, et al.. Photoelectric properties of alternating-current light-emitting diodes [J]. Acta Optica Sinica, 2010, 30(12): 3586-3591.

[6] 陈 健, 王庆康, 李海华. 光子晶体结构参数的随机扰动对光子晶体LED出光效率的研究[J]. 光学学报, 2010, 30(1): 233-236.

    Chen Jian, Wang Qingkang, Li Haihua. Effect of random perturbation of structural parameters on the light extraction efficiency of light emitting diodes with photonic crystal [J]. Acta Optica Sinica, 2010, 30(1): 233-236.

[7] 刘军林, 邱 冲, 江风益. Si衬底GaN基蓝光LED钝化增透膜研究[J]. 光学学报, 2010, 30(10): 2978-2982.

    Liu Junlin, Qiu Chong, Jiang Fengyi. Research of passivation and anti reflecting layer on GaN based blue LED on silicon substrate [J]. Acta Optica Sinica, 2010, 30(10): 2978-2982.

[8] M D McCluskey, L T Romano, B S Krusor, et al.. Phase separation in InGaN/GaN multiple quantum wells [J]. Appl Phys Lett, 1998, 72(14): 1730-1732.

[9] H Miyake, A Motogaito, K Hiramatsu, et al.. Effects of reactor pressure on epitaxial lateral overgrowth of GaN via low-pressure metalorganic vapor phase epitaxy [J]. Jpn J Appl Phys, 1999, 38(9): L1000-L1002.

[10] A E Romanov, T J Baker, S Nakamura, et al.. Strain-induced polarization in wurtzite III-nitride semipolar layers [J]. J Appl Phys, 2006, 100(2): 023522.

[11] S E Brinkley, Y D Lin, A Chakraborty, et al.. Polarized spontaneous emission from blue-green m-plane GaN-based light emitting diodes [J]. Appl Phys Lett, 2011, 98(1): 011110.

[12] X Zhang, P D Dapkus, D H Rich. Lateral epitaxy overgrowth of GaN with NH3 flow rate modulation [J]. Appl Phys Lett, 2000, 77(10): 1496-1498.

[13] T S Zheleva, O H Nam, W M Ashmawi, et al.. Lateral epitaxy and dislocation density reduction in selectively grown GaN structures [J]. J Cryst Growth, 2001, 222(4): 706-718.

[14] P de Mierry, N Kriouche, M Nemoz, et al.. Semipolar GaN films on patterned r-plane sapphire obtained by wet chemical etching [J]. Appl Phys Lett, 2010, 96(23): 231918.

[15] T Tsuchiya, J Shimizu, M Shirai, et al.. InGaAlAs selective-area growth on an InP substrate by metalorganic vapor-phase epitaxy [J]. J Cryst Growth, 2005, 276(3-4): 439-445.

[16] P Waltereit, O Brandt, A Trampert, et al.. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes [J]. Nature, 2000, 406(6798): 865-868.

[17] K Hiramatsu, K Nishiyama, M Onishi, et al.. Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO) [J]. J Cryst Growth, 2000, 221(1-4): 316-326.

[18] K Hiruma, T Haga, M Miyazaki. Surface migration and reaction mechanism during selective growth of GaAs and AlAs by metalorganic chemical vapor deposition [J]. J Cryst Growth, 1990, 102(4): 717-724.

[19] K Yamaguchi, M Ogasawara, K Okamoto. Surface-diffusion model in selective metalorganic chemical vapor deposition [J]. J Appl Phys, 1992, 72(12): 5919-5925.

[20] Bernardini, V Fiorentini, D Vanderbilt. Spontaneous polarization and piezoelectric constants of III-V nitrides [J]. Phys Rev B, 1997, 56(16): R10024-R10027.

杨国锋, 朱华新, 郭颖, 李果华, 高淑梅. GaN{11-22}半极性面上生长InGaN/GaN多量子阱的研究[J]. 激光与光电子学进展, 2014, 51(2): 022302. Yang Guofeng, Zhu Huaxin, Guo Ying, Li Guohua, Gao Shumei. Study on the Growth of InGaN/GaN Multiple Quantum Wells on GaN {11-22} Semipolar Plane[J]. Laser & Optoelectronics Progress, 2014, 51(2): 022302.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!