发光学报, 2017, 38 (7): 923, 网络出版: 2017-07-05  

量子阱结构对含V形坑InGaN/GaN蓝光LED效率衰减的影响

Effect of Quantum Well Structure on The Efficiency Droop of V-pits-containing InGaN/GaN Blue LED
作者单位
南昌大学 国家硅基LED工程技术研究中心, 江西 南昌 330047
摘要
使用MOCVD在图形化Si衬底上生长了含V形坑的InGaN/GaN蓝光LED。通过改变生长温度, 生长了禁带宽度稍大的载流子限制阱和禁带宽度稍小的发光阱, 研究了两类量子阱组合对含V形坑InGaN/GaN基蓝光LED效率衰减的影响。使用高分辨率X射线衍射仪和LED电致发光测试系统对LED外延结构和LED光电性能进行了表征。结果表明: 限制阱靠近n层、发光阱靠近p层的新型量子阱结构, 在室温75 A/cm2时的外量子效率相对于其最高点仅衰减12.7% , 明显优于其他量子阱结构的16.3%、16.0%、28.4%效率衰减, 且只有这种结构在低温时(T≤150 K)未出现内量子效率随电流增大而剧烈衰减的现象。结果表明, 合理的量子阱结构设计能够显著提高电子空穴在含V形坑量子阱中的有效交叠, 促进载流子在阱间交互, 提高载流子匹配度, 抑制电子泄漏, 从而减缓效率衰减、提升器件光电性能。
Abstract
V-pits-containing InGaN/GaN blue LEDs were grown on patterned Si substrate by metal-organic chemical vapor deposition (MOCVD). A carrier confinement quantum well(QW)with a larger band gap and a light-emitting QW with a slightly smaller band gap were grown by tuning growth temperature. The effect of QW structure on the efficiency droop performance of V-pits-containing InGaN/GaN blue LED was investigated with some means to mix the two different types of QW. LED epitaxial wafers and LED photoelectric properties were characterized by high-resolution X-ray diffraction and LED test system. For the novel quantum well structure in which the confinement QW close to the n-side and the light-emitting QW close to the p-side, the droop of the external quantum efficiency is only 12.7%, which shows a more significant improvement compared with other QW structures (16.3%, 16.0%, 28.4%). What’s more, only for this kind of structure, the internal quantum efficiency does not decrease sharply with the increasing of drive current at low temperature(T≤150 K). The results show that a reasonable design of QW structure can significantly improve the effective overlap of electron-hole pairs in V-pits-containing InGaN/GaN QWs, promote carriers interaction between wells, and then improve carriers matching degree, inhibit electron leakage, retard efficiency droop, and finally enhance the photoelectric properties of devices.
参考文献

[1] HORIUCHI N. Light-emitting diodes: natural white light [J]. Nat. Photon., 2010, 4(11): 738.

[2] MORKO H. Handbook of Nitride Semiconductors and Devices [M]. Weinheim: Wiley-VCH, 2008.

[3] YANG Y, CAO X A, YAN C H. Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes [J]. IEEE Trans. Electron Dev., 2008, 55(7): 1771-1775.

[4] NAKAMURA S, SENOH M, IWASA N, et al.. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures [J]. Jpn. J. Appl. Phys., 1995, 34(7A): L797.

[5] KIM M H, SCHUBERT M F, DAI Q, et al.. Origin of efficiency droop in GaN-based light-emitting diodes [J]. Appl. Phys. Lett., 2007, 91(18): 183507-1-3.

[6] SHEN Y C, MUELLER G O, WATANABE S, et al.. Auger recombination in InGaN measured by photoluminescence [J]. Appl. Phys. Lett., 2007, 91(14): 141101-1-3.

[7] ROZHANSKY I V, ZAKHEIM D A. Analysis of the causes of the decrease in the electroluminescence efficiency of AlGaInN light-emitting-diode heterostructures at high pumping density [J]. Semiconductors, 2006, 40(7): 839-845.

[8] BAN D, SARGENT E H. Influence of nonuniform carrier distribution on the polarization dependence of modal gain in multiquantum-well lasers and semiconductor optical amplifiers [J]. IEEE J. Quant. Electron., 2000, 36(9): 1081-1088.

[9] XIA C S, LI Z M S, LU W, et al.. Efficiency enhancement of blue InGaN/GaN light-emitting diodes with an AlGaN-GaN-AlGaN electron blocking layer [J]. J. Appl. Phys., 2012, 111(9): 094503-1-4.

[10] WANG C H, KE C C, LEE C Y, et al.. Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer [J]. Appl. Phys. Lett., 2010, 97(26): 261103-1-3.

[11] XIA C S, LI Z M S, LU W, et al.. Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier [J]. Appl. Phys. Lett., 2011, 99(23): 233501-1-3.

[12] CHEN Y, TAKEUCHI T, AMANO H, et al.. Pit formation in GaInN quantum wells [J]. Appl. Phys. Lett., 1998, 72(6): 710-712.

[13] WU X H, ELSASS C R, ABARE A, et al.. Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells [J]. Appl. Phys. Lett., 1998, 72(6): 692-694.

[14] WATANABE K, YANG J R, HUANG S Y, et al.. Formation and structure of inverted hexagonal pyramid defects in multiple quantum wells InGaN/GaN [J]. Appl. Phys. Lett., 2003, 82(5): 718-720.

[15] HANGLEITER A, HITZEL F, NETZEL C, et al.. Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency [J]. Phys. Rev. Lett., 2005, 95(12): 127402-1-4.

[16] QUAN Z J, WANG L, ZHENG C D, et al.. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes [J]. J. Appl. Phys., 2014, 116(18): 183107-1-5.

[17] WU X M, LIU J L, JIANG F Y. Hole injection from the sidewall of V-shaped pits into c-plane multiple quantum wells in InGaN light emitting diodes [J]. J. Appl. Phys., 2015, 118(16): 164504-1-4.

[18] LI C K, WU C K, HSU C C, et al.. 3D numerical modeling of the carrier transport and radiative efficiency for InGaN/GaN light emitting diodes with V-shaped pits [J]. AIP Adv., 2016, 6(5): 055208-1-10.

[19] SUN Q, YAN W, FENG M X, et al.. GaN-on-Si blue/white LEDs: epitaxy, chip, and package [J]. J. Semicond., 2016, 37(4): 044006-1-8.

[20] 江风益, 刘军林, 王立, 等. 硅衬底高光效GaN基蓝色发光二极管 [J]. 中国科学: 物理学 力学 天文学, 2015, 45(6): 067302-1-18.

    JIANG F Y, LIU J L, WANG L, et al.. High optical efficiency GaN based blue LED on silicon substrate [J]. Sci. Sinica Phys., Mech. Astron., 2015, 45(6): 067302-1-18. (in Chinese)

[21] LIU J L, FENG F F, ZHOU Y H, et al.. Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate [J]. Appl. Phys. Lett., 2011, 99(11): 111112-1-3.

[22] MAO Q H, LIU J L, WU X M, et al.. Influence of growth rate on the carbon contamination and luminescence of GaN grown on silicon [J]. J. Semicond., 2015, 36(9): 093003-1-4.

[23] LIU J P, RYOU J H, DUPUIS R D, et al.. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes [J]. Appl. Phys. Lett., 2008, 93(2): 021102-1-3.

[24] 赵芳, 张运炎, 宋晶晶, 等. 具有三角形InGaN/GaN多量子阱的高内量子效率的蓝光LED [J]. 发光学报, 2013, 34(1): 66-72.

    ZHAOF, ZHANG Y Y, SONG J J, et al.. High internal quantum efficiency blue light-emitting diodes with triangular shaped InGaN/GaN multiple quantum wells [J]. Chin. J. Lumin., 2013, 34(1): 66-72. (in English)

[25] DAI Q, SCHUBERT M F, KIM M H, et al.. Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities [J]. Appl. Phys. Lett., 2009, 94(11): 111109-1-3.

[26] YAMANE Y, FUJIWARA K, SHEU J K. Largely variable electroluminescence efficiency with current and temperature in a blue (In, Ga)N multiple-quantum-well diode [J]. Appl. Phys. Lett., 2007, 91(7): 073501-1-3.

[27] WATANABE S, YAMADA N, NAGASHIMA M, et al.. Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes [J]. Appl. Phys. Lett., 2003, 83(24): 4906-4908.

[28] QI Y D, LIANG H, TANG W, et al.. Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy [J]. J. Cryst. Growth, 2004, 272(1-4): 333-340.

吕全江, 莫春兰, 张建立, 吴小明, 刘军林, 江风益. 量子阱结构对含V形坑InGaN/GaN蓝光LED效率衰减的影响[J]. 发光学报, 2017, 38(7): 923. LYU Quan-jiang, MO Chun-lan, ZHANG Jian-li, WU Xiao-ming, LIU Jun-lin, JIANG Feng-yi. Effect of Quantum Well Structure on The Efficiency Droop of V-pits-containing InGaN/GaN Blue LED[J]. Chinese Journal of Luminescence, 2017, 38(7): 923.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!