作者单位
摘要
华东理工大学煤气化及能源化工教育部重点实验室, 上海 200237
OH*自由基是火焰中主要的激发态自由基之一, 它所产生的化学发光可用于描述火焰的结构、 拉伸率、 氧燃当量比和热释放速率等特征信息, 因此被广泛应用于火焰燃烧状态的在线诊断。 以甲烷/氧气层流同轴射流扩散火焰作为研究对象, 采用GRI-Mech 3.0机理结合OH*自由基生成和淬灭反应进行数值计算, 对OH*自由基的二维分布特性进行研究, 分析不同区域内OH*自由基的生成路径, 并探讨不同氧燃当量比例和不同喷嘴出口尺寸对OH*自由基强度和分布特性的影响。 模拟结果与实验研究基本吻合, 表明计算模型能够准确描述火焰中OH*自由基的二维分布。 结果表明: 在甲烷/氧气层流同轴射流扩散火焰中, OH*自由基存在两种不同形态的分布区域, 分别由反应CH+O2=OH*+CO和H+O+M=OH*+M生成; 随着氧燃当量比提高, OH*自由基的分布区域逐渐向火焰下游扩张, 根据其分布形态的变化可以对火焰燃烧状况进行判断; 如果OH*自由基仅分布于火焰的上游区域且呈断开形态, 则说明火焰处于贫氧燃烧状态。 如果OH*分布呈环状形态, 则说明火焰处于富氧燃烧状态; 相同氧气流量条件下, 缩小喷嘴出口的环隙尺寸有助于加强燃料和氧气的化学反应程度, 从而使火焰中OH*自由基的摩尔分数显著提高, 增强OH*化学发光的辐射强度, 提高火焰光谱诊断的准确性。
甲烷 扩散火焰 OH*自由基 数值模拟 Methane Diffusion flame OH* radicals Numerical simulation 
光谱学与光谱分析
2018, 38(3): 685
作者单位
摘要
华东理工大学煤气化及能源化工教育部重点实验室, 上海 200237
火焰的辐射光谱可为燃烧诊断提供诸多信息, 因此目前对简单的气态火焰自由基辐射特性已进行了大量研究, 而关于非均相火焰的辐射光谱特性研究则相对较少。 采用改进的热氧喷嘴技术在敞开空间下直接点燃水煤浆, 并利用光纤光谱仪和紫外成像系统, 着重对甲烷和水煤浆火焰的辐射光谱及OH*的二维分布特性进行研究。 结果表明: 与甲烷火焰的光谱辐射相比, 水煤浆火焰不仅存在OH*, CH*和C2*特征辐射, 还产生了Na*, Li*, K*和H*的发射谱线, 并出现了连续的黑体辐射, 这些光谱辐射特征可作为水煤浆气化或燃烧的标志, 也可作为水煤浆是否点燃的判据; 通入水煤浆后, OH*强度明显下降, 而CH*和C2*强度增大。 对比甲烷火焰OH*二维分布, 水煤浆火焰OH*峰值强度明显下降, 化学反应区域面积显著减小; 沿着火焰传播方向, 甲烷和水煤浆火焰轴向的OH*强度均呈先增大后减小的趋势; 甲烷火焰径向的OH*在反应核心区出现了双峰形态分布, 而水煤浆火焰OH*径向始终呈单峰分布。 随着氧碳当量比增大, 水煤浆火焰OH*的存在范围扩大, 说明氧气的增加促进了OH*的产生; 随水煤浆流量提高, OH*的反应核心区域缩小, 峰值强度明显下降, CH*, C2*, Na*, Li*, K*和H*的强度显著增强, 连续的黑体辐射强度也明显增大, 这些辐射光谱的变化可用于表征操作负荷的变化。
光谱辐射 热氧喷嘴 水煤浆 甲烷 扩散火焰 Spectral radiation Hot oxygen burner Coal water slurry Methane Diffusion flame 
光谱学与光谱分析
2016, 36(10): 3127

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!