作者单位
摘要
吉林大学物理学院,超硬材料国家重点实验室,长春 130012
材料在压力作用下可出现不同的响应行为,如硬化、压缩性、光学性质改变等,依此设计出具有优异力学、机械以及发光性能的材料,是设计新型功能材料的重要途径。本文将介绍课题组近年来在新型压致响应功能晶体材料研究中取得的进展,基于碳及碳骨架分子,设计不同的碳基分子共晶,利用高压技术,设计构筑出系列具有潜在超硬特性、负体积压缩性的材料以及反常压力响应的发光材料。
共晶体 高压 压致响应 富勒烯 溶剂化富勒烯 压致膨胀 反常荧光响应 co-crystal high pressure pressure response fullerene solvated fullerene pressure-induced expansion abnormal fluorescence response 
人工晶体学报
2021, 50(7): 1307
作者单位
摘要
吉林大学超分子结构与材料重点实验室, 理论化学研究所, 吉林 长春 130012
五氟苯酚(PFP)、 五氟苯甲酸(PFBA)与联吡啶(BP)利用溶剂缓慢挥发的方法制得BP/PFP和BP/PFBA两种共晶, 并获得其晶体结构。 结合密度泛函理论模拟对这两种共晶的红外和拉曼光谱进行解析。 红外光谱证明两种共晶内部存在氢键作用。 拉曼光谱表明BP/PFBA共晶内部的氢键强于BP/PFP。 此外, 结合红外、 拉曼及晶体结构数据可知, 在BP/PFP共晶中同时存在氢键和π—π相互作用。 弱相互作用的差异导致其共晶的结构上的差异。 该研究对进一步理解共晶结构和性质以及指导共晶设计具有一定的研究意义。
共晶 红外 拉曼 氢键 Co-crystal Infrared Raman Hydrogen bond 
光谱学与光谱分析
2020, 40(5): 1393
作者单位
摘要
中国计量大学太赫兹技术与应用研究所, 浙江 杭州 310018
使用太赫兹时域光谱(THz-TDS)、 傅里叶红外光谱(FTIR)和傅里叶拉曼光谱(FT-Raman)技术在室温下对γ-氨基丁酸(GABA)、 苯甲酸(BA)及其研磨和溶剂共晶体进行表征分析。 FTIR, FT-Raman及THz光谱都能够分辨原料物质及GABA-BA共晶体。 其中THz实验结果显示了GABA-BA研磨和溶剂共晶体位于0.93, 1.33, 1.57 THz的吸收峰明显区别于原料物质, 这体现了不同物质在THz波段具有明显的指纹特征。 为确认GABA-BA共晶体的晶型结构, 分别采用FTIR和FT-Raman光谱进行光谱归属。 通过FTIR的光谱归属推断GABA-BA共晶体由GABA中的氨基H23和BA中的羰基O1构成第一个氢键, 氨基中的N18结合BA中的羟基H15形成第二个氢键。 FT-Raman光谱中, 原料物质GABA中位于576, 886, 1 250, 1 283, 1 337, 1 423和1 470 cm-1处归属于—CH2, —NH2弯曲振动的Raman散射峰在GABA-BA共晶体内消失, 判定GABA中的氮原子N18亦可作为氢键受体, 从而验证了GABA-BA共晶体的晶型结构。 此外, 为了进一步说明溶剂pH值对GABA-BA共晶体的形成条件的影响, 利用THz-TDS, FT-Raman光谱确认了该共晶体在溶剂条件2.00≤pH≤7.20可稳定地生成。 这一研究结果同时也为利用THz-TDS, FT-Raman光谱技术辨别固体物质晶型结构、 晶型形成条件提供了实验及理论依据。
γ-氨基丁酸 苯甲酸 共晶体 太赫兹时域光谱 傅里叶变换红外光谱 傅里叶变换拉曼光谱 GABA BA Co-crystal THz-TDS FTIR FT-Raman 
光谱学与光谱分析
2017, 37(12): 3786
作者单位
摘要
1 河北医科大学药学院, 河北 石家庄050017
2 北京市太赫兹谱重点实验室, 首都师范大学物理学院, 北京100048
药物共晶是改善药物活性成分(API)的物理化学特性的新技术和新思维, 具有很大的应用潜力。 本实验采用研磨法制备了双苯氟嗪盐酸盐(DF-HCl)和苯甲酸的共晶, 应用红外光谱(IR)、 拉曼光谱(Raman)、 差示扫描量热分析(DSC)、 X射线衍射(XRD)和太赫兹光谱(THz)对共晶进行了表征。 结果表明: 双苯氟嗪盐酸盐与苯甲酸之间形成共晶分子, 太赫兹谱的研究进一步表明两种分子之间有氢键形成。
药物活性成分 红外光谱 拉曼光谱 太赫兹光谱 共晶 Active pharmaceutical ingredient (API) IR Raman THz spectra Co-crystal 
光谱学与光谱分析
2011, 31(9): 2476

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!