李逵 1,4孟润宇 2,3李睿晅 1,4张光银 1,4[ ... ]樊仲维 4,*
作者单位
摘要
1 中国科学院空天信息创新研究院,北京 100094
2 云南大学物理与天文学院,云南 昆明 650216
3 中国科学院云南天文台,云南 昆明 650216
4 中国科学院大学光电学院,北京 100049
5 北京航空航天大学仪器科学与光电工程学院,北京 100191
开发了由高重复频率(3 kHz)高能量(3 mJ)钛蓝宝石激光器驱动的极紫外和软X射线高次谐波激光光源。该光源系统在30 nm(光子能量为~45 eV)波长附近实现了大于120 μW的平均功率,在13.46 nm波长(光子能量为~92 eV)处实现了1.9 μW的平均功率,其中在13.46 nm波长处带宽为0.124 nm的单个谐波实现了0.32 μW的平均功率。此外,在该系统中,激光功率连续12 h的不稳定性均方根小于5%,连续8 h光束指向均方根小于10 µrad。该系统在生物成像、干涉光刻和芯片检测等领域中具有重要应用。
激光器 高次谐波 极紫外激光 13.5 nm光源 软X射线 飞秒激光 
中国激光
2024, 51(7): 0701011
高健 1,2,*吴健 1,2
作者单位
摘要
1 华东师范大学精密光谱科学与技术国家重点实验室,上海 200241
2 华东师范大学重庆研究院精密光学重庆市重点实验室,重庆 401121
超短强激光脉冲与物质相互作用产生的高次谐波辐射是一种相干的极紫外或软X射线光源,并且在时间上还是阿秒脉冲串。在不同介质中探寻更有效的高次谐波产生方案一直是研究热点。利用飞秒激光烧蚀低密度等离子体羽可将高次谐波扩展到几乎任何固体材料,极大地丰富了媒介的选择性。由于某些材料的等离子体内低电离态离子共振跃迁频率与谐波波长存在匹配,使得在极紫外波段特定阶次谐波表现出明显的共振增强效应,从而能够获得强单色的高次谐波辐射。结合纳米颗粒的近场增强效应和较大的电子回撞截面,极紫外波段的高次谐波转换效率可以进一步得到提高。激光等离子体高次谐波有望产生高脉冲能量、增强阶次可调和高重复频率的相干极紫外辐射。综述单阶谐波共振增强效应的产生原理和研究进展,分析各种优化方法和光场调控手段,并对未来的发展趋势进行展望。
非线性光学 高次谐波 低密度等离子体 共振增强 极紫外波段 
中国激光
2024, 51(7): 0701004
梅波 1,2曾志男 1,3,*
作者单位
摘要
1 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800
2 中国科学院大学,北京 100049
3 张江实验室,上海 200120
高次谐波自身特性的表征是其在超快时间测量中应用的前提,但是由于其所处波段和宽带光源的特性,使得其三维时空相位的完整测量一直是高次谐波表征的难题。多波长高次谐波的相干合成可以获得阿秒脉冲,但是目前阿秒脉冲的相位测量也只能获得一维时域信息。针对以上问题,提出了一种改进的混态叠层衍射成像方案来解决高次谐波的空域测量,成功实现由多个极紫外(EUV)波长构成的高次谐波梳的空域复振幅重建,并研究了样品吸收对空域复振幅重建过程的影响。研究发现,对于多波长高次谐波重建速度和质量,存在最优的样品衍射图案对比度。
测量 高次谐波 叠层衍射成像 相位恢复 多波长 
中国激光
2023, 50(23): 2304004
作者单位
摘要
安徽大学 物理与光电工程学院,合肥 230601
针对双模扰动下的烧蚀瑞利-泰勒不稳定性增长问题,采用高精度的数值计算方法,研究了不同预热程度下模耦合产生的多个高次谐波幅值的发展和演化问题。研究表明,三种预热烧蚀条件下,当扰动基模满足长波与短波耦合方式时,谐波中的长波模态占主导,而短波模发展明显受到抑制;当满足短波与短波耦合时,耦合结果带来了许多新的增长较快的长波模态,此时短波模增长呈现小幅震荡形式。比较两种耦合方式可以发现,长波结构在烧蚀瑞利-泰勒不稳定性弱非线性阶段都占主导地位,尤其是短波与短波耦合中气泡与尖钉表现出不同于两个基模的长波模结构。进一步分析预热效应对模耦合增长的影响,发现预热程度越强就越能削弱耦合谐波的增长,这说明预热对烧蚀瑞利-泰勒不稳定性具有致稳作用,这对惯性约束聚变工程中控制烧蚀瑞利-泰勒不稳定性发展具有重要意义。
双模扰动 预热 瑞利-泰勒不稳定性 高次谐波 气泡 尖钉 two-mode perturbations preheating Rayleigh-Taylor instability high-order harmonics bubbles spikes 
强激光与粒子束
2022, 34(8): 082203
作者单位
摘要
1 华中科技大学 物理学院, 武汉430074
2 武汉光电国家研究中心, 武汉430074
台式阿秒相干光源在过去20多年取得了飞速的发展,其研究重心已经从早期的产生与测量机理的探索逐渐过渡到了极端时间尺度超快过程的追踪及操控上。目前阿秒时间分辨的谱学技术不仅能实现简单的原子分子体系瞬态过程的直接追踪,还被逐步应用到化学分子、生物分子、固体材料等复杂体系的测量中。本文回顾了基于阿秒光源的超快测量技术的发展,介绍了相关技术的原理及其在物理、化学、信息科学领域的应用研究。
高次谐波 阿秒光源 泵浦探测 超快测量 阿秒光电子谱法 阿秒光谱法 High-order harmonics Attosecond light source Pump-probe Ultrafast measurement Attosecond photoelectron spectroscopy Attosecond spectroscopy 
光子学报
2021, 50(8): 0850203
作者单位
摘要
1 西北师范大学 物理与电子工程学院, 兰州730070
2 西北民族大学 电气工程学院, 兰州730070
利用分裂算符法数值求解二维含时薛定谔方程研究了He原子在反旋双色组合激光场(由椭圆极化的基频场与圆极化的三倍频场构成)中产生高次谐波的偏振特性。研究结果表明,改变基频场的椭偏率、强度及相位可实现对高次谐波偏振态从圆偏振到椭圆偏振以及线偏振的完全调控,为实验室产生偏振态可控的紫外-软X射线光源提供了参考。
高次谐波 反旋双色激光场 偏振态 调控 High-order harmonics Counter-rotating two-color laser field Polarization state Control 
光子学报
2021, 50(6): 161
作者单位
摘要
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,西安709
2 中国科学院大学,北京100049
阿秒脉冲光源诞生于21世纪初,是同时具有阿秒时间和纳米空间分辨率的全相干光源,在近20年的时间里,推动了阿秒科学研究不断取得显著的进展和突破。阿秒脉冲为物理、化学、生物、材料、信息等领域的发展提供了全新研究手段和重要创新机遇。本文介绍了阿秒脉冲的重要发展历程,主要综述并总结了高次谐波、阿秒脉冲产生以及阿秒脉冲测量的关键技术和现状,最后对阿秒脉冲研究的发展进行了展望。
超快光学 阿秒脉冲 高次谐波 选通技术 阿秒脉冲测量 软X射线 Ultrafast optics Attosecond pulse High-order harmonics Gating technique Attosecond pulse characterization Soft X ray 
光子学报
2021, 50(1): 1
作者单位
摘要
中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
惯性约束聚变实验对数据测量精度有着很高的要求,诊断设备需要向绝对测量的方向发展,对标定提出了很高的要求。北京同步辐射装置(BSRF)提供了良好的标定光源,其光源特性,如高次谐波份额的数值研究,对标定工作和ICF精密诊断十分重要。通过测量BSRF上4B7B光束线的软X射线源上带有或不带有滤片的标准探测器的电流,研究了不同滤片对单色X射线的透射率曲线,并建立了拟合的理论透射率曲线。根据数据分析,计算出单色光源中二次谐波的比例。实验结果显示,二次谐波在软X射线能段主要集中在180~300 eV以及450~800 eV,所占份额大部分在15%以下,最大可达到25%左右。利用测量的高次谐波份额,开展了对平响应滤片透过率以及X射线二极管灵敏度的修正工作,修正后的结果和理论相符,极大地提高了诊断设备精密诊断能力。完整的理论模型和实验相互验证,说明基于滤片的高次谐波份额测量技术目前已经成熟并且具有广阔的应用前景。
惯性约束聚变 同步辐射 标定 高次谐波 inertial confinement fusion synchronous radiation calibration high-order harmonics 
红外与激光工程
2020, 49(8): 20200072
张轶 1,2曾志男 1,*
作者单位
摘要
1 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
在高次谐波产生过程中,相位匹配是提高其产生效率的必备技术。传统相位匹配技术在各向同性的气体介质中无法实现,而准相位匹配技术作为一种可行的替代方案,可以突破高次谐波产生过程中相干长度的限制,实现谐波强度随传播距离持续增加。采用准连续的逆向传播太赫兹光场调制高次谐波的产生过程,以实现准相位匹配;通过模拟计算探讨了谐波光谱与调制场参数之间的关系,结果发现获得准相位匹配的光子能量与太赫兹调制场波长成反比,与调制场场强、泵浦激光场强的比值成正比。
非线性光学 高次谐波 准相位匹配 太赫兹 超快光学 
中国激光
2020, 47(6): 0614001
Author Affiliations
Abstract
1 RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
2 Center for EUV Lithography, Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Kamigori, Hyogo 678-1205, Japan
In this review, we describe our research on the development of the 13.5 nm coherent microscope using high-order harmonics for the mask inspection of extreme ultraviolet (EUV) lithography. EUV lithography is a game-changing piece of technology for high-volume manufacturing of commercial semiconductors. Many top manufacturers apply EUV technology for fabricating the most critical layers of 7 nm chips. Fabrication and inspection of defect-free masks, however, still remain critical issues in EUV technology. Thus, in our pursuit for a resolution, we have developed the coherent EUV scatterometry microscope (CSM) system with a synchrotron radiation (SR) source to establish the actinic metrology, along with inspection algorithms. The intensity and phase images of patterned EUV masks were reconstructed from diffraction patterns using ptychography algorithms. To expedite the practical application of the CSM, we have also developed a standalone CSM, based on high-order harmonic generation, as an alternative to the SR-CSM. Since the application of a coherent 13.5 nm harmonic enabled the production of a high contrast diffraction pattern, diffraction patterns of sub-100 ns size defects in a 2D periodic pattern mask could be observed. Reconstruction of intensity and phase images from diffraction patterns were also performed for a periodic line-and-space structure, an aperiodic angle edge structure, as well as a cross pattern in an EUV mask.
high-order harmonics coherent EUV light EUV lithography coherent EUV scatterometry microscope synchrotron radiation EUV mask inspection 
International Journal of Extreme Manufacturing
2019, 1(3): 032001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!