发光学报, 2016, 37 (12): 1545, 网络出版: 2016-12-06   

基于GaN 基HEMT结构的传感器件研究进展

Progress of Sensor Elements Based on GaN-based HEMT Structure
作者单位
北京工业大学 光电子技术教育部重点实验室, 北京100124
摘要
GaN基高电子迁移率晶体管(HEMT)具有异质结界面处的高二维电子气(2DEG)浓度、宽禁带、高击穿电压、稳定的化学性质以及高的电子迁移率, 这些特性使它发展起来的传感器件在灵敏度、响应速度、探测面、适应恶劣环境上具备了显著的优点。本文首先围绕GaN基HEMT的基本结构发展起来的两类研究成熟的传感器, 对其结构、工作机理、工作进展以及优缺点进行了探讨与总结; 而后, 着重从改变器件材料及优化栅结构与栅上材料的角度, 阐述了3种GaN基HEMT新型传感器的最新进展, 其中, 从材料体系、关键工艺、探测结构、原理及新机理方面重点介绍了GaN基HEMT光探测器; 最后, 探索了GaN基HEMT传感器件未来的发展方向。
Abstract
The sensor elements based on GaN high electron mobility transistor (HEMT) have considerable advantages on sensitivity, response speed, detection surface, and harsh environment adaptability because of the features of HEMT, such as high 2DEG density at the hetero-interface, wide band gap, high breakdown voltage, stable chemical properties, and high electron mobility. In this paper, the structures, mechanism, progress of work, advantages and disadvantages about the two mature types of sensors developed from GaN-based HEMT basic structure are discussed and summarized firstly. Then, the latest progress on three kinds of nevel GaN-based HEMT sensors is reviewed in detail focusing on the device material and the optimization of gate structure and material. Among them, GaN-based HEMT photodetector is highlighted in the aspects of the material system, key process, detector structure, principle and new mechanisms. Finally, the future direction for the development of GaN-based HEMT sensor elements is explored.
参考文献

[1] NEAMEN D H. 半导体器件与物理 [M]. 赵毅强,姚素英,解晓东,等,译. 北京: 电子工业出版社, 2007.

    NEAMEN D H. Semiconductor Physics and Devices Basic Principles [M]. ZHAO Y Q, YAO S Y, XIE X D, et al.. trans. Beijing: Electronics Industry Press, 2007. (in Chinese)

[2] LIN Z J, LU W, LEE J, et al.. Barrier heights of Schottky contacts on strained AlGaN/GaN heterostructures: determination and effect of metal work functions [J]. Appl. Phys. Lett., 2003, 82(24): 4364-4366.

[3] 于宁,王红航,刘飞飞,等. GaN HEMT器件结构的研究进展 [J]. 发光学报, 2015, 36(10): 1178-1187.

    YU N, WANG H H, LIU F F, et al.. Research progress of GaN HEMT device structure [J]. Chin. J. Lumin., 2015, 36(10): 1178-1187. (in Chinese)

[4] GMACHL C, NG H M, CHU S N G, et al.. Intersubband absorption at λ~1.55 μm in well- and modulation-doped GaN/AlGaN multiple quantum wells with superlattice barriers [J]. Appl. Phys. Lett., 2000, 77(23): 3722-3724.

[5] AMBACHER O, FOUTZ B, SMART J, et al.. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures [J]. J. Appl. Phys., 2000, 87(1): 334-344.

[6] NEUBERGER R, MLLER G, AMBACHER O, et al.. High-electron-mobility AlGaN/GaN transistors (HEMTs) for fluid monitoring applications [J]. Phys. Stat. Sol. (a), 2001, 185(1): 85-89.

[7] SCHALWIG J, MLLER G, AMBACHER O, et al.. Group-Ⅲ-nitride based gas sensing devices [J]. Phys. Stat. Sol.(a), 2001, 185(1): 39-45.

[8] EICKHOFF M, NEUBERGER R, STEINHOFF G, et al.. Wetting behaviour of GaN surfaces with Ga- or N-face polarity [J]. Phys. Stat. Sol. (b), 2001, 228(2): 519-522.

[9] SCHALWIG J, MLLER G, EICKHOFF M, et al.. Gas sensitive GaN/AlGaN-heterostructures [J]. Sens. Actuators B: Chem., 2002, 87(3): 425-430.

[10] STUTZMANN M, STEINHOFF G, EICKHOFF M, et al.. GaN-based heterostructures for sensor applications [J]. Diamond Relat. Mater., 2002, 11(3-6): 886-891.

[11] STEINHOFF G, HERMANN M, SCHAFF W J, et al.. pH response of GaN surfaces and its application for pH-sensitive field-effect transistors [J]. Appl. Phys. Lett., 2003, 83(1): 177-179.

[12] PEARTON S J, REN F, WANG Y L, et al.. Recent advances in wide bandgap semiconductor biological and gas sensors [J]. Prog. Mater. Sci., 2010, 55(1): 1-59.

[13] 郭智博,汪莱,郝智彪,等. 基于AlGaN/GaN HEMT结构的氢气传感器 [J]. 真空科学与技术学报, 2012, 32(12): 1089-1092.

    GUO Z B, WANG L, HAO Z B, et al.. Development of hydrogen sensor based on AlGaN/GaN high electron mobility transistor structure [J]. Chin. J. Vac. Sci. Technol., 2012, 32(12): 1089-1092. (in Chinese)

[14] GUO Z B, WANG L, HAO Z B, et al.. Modeling and experimental study on sensing response of an AlGaN/GaN HEMT-based hydrogen sensor [J]. Sens. Actuators B: Chem., 2013, 176: 241-247.

[15] SONG J H, LU W. AlGaN/GaN heterostructure field effect transistors for high temperature hydrogen sensing with enhanced sensitivity [C]. Proceedings of The IEEE International Electron Devices Meeting, Washington DC, USA, 2007: 835-838.

[16] SONG J H, LU W. Operation of Pt/AlGaN/GaN-heterojunction field-effect-transistor hydrogen sensors with low detection limit and high sensitivity [J]. IEEE Electron Dev. Lett., 2008, 29(11): 1193-1195.

[17] ALI M, CIMALLA V, LEBEDEV V, et al.. Pt/GaN Schottky diodes for hydrogen gas sensors [J]. Sens. Actuators B: Chem., 2006, 113(2): 797-804.

[18] WANG X H, WANG X L, FENG C, et al.. Hydrogen sensors based on AlGaN/AlN/GaN HEMT [J]. Microelectron. J., 2008, 39(1): 20-23.

[19] HIGUCHI T, NAKAGOMI S, KOKUBUN Y. Field effect hydrogen sensor device with simple structure based on GaN [J]. Sens. Actuators B: Chem., 2009, 140(1): 79-85.

[20] LO C F, CHANG C Y, CHU B H, et al.. Effect of humidity on hydrogen sensitivity of Pt-gated AlGaN/GaN high electron mobility transistor based sensors [J]. Appl. Phys. Lett., 2010, 96(23): 232106.

[21] RGER I, VANKO G, KUNZO P, et al.. AlGaN/GaN HEMT based hydrogen sensors with gate absorption layers formed by high temperature oxidation [J]. Procedia Eng., 2012, 47: 518-521.

[22] CHEN C C, CHEN H I, LIU I P, et al.. Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment [J]. Sens. Actuators B: Chem., 2015, 211: 303-309.

[23] 李加东,程珺洁,苗斌,等. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究 [J]. 物理学报, 2014, 63(7): 070204-1-6.

    LI J D, CHENG J J, MIAO B, et al.. Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors [J]. Acta Phys. Sinica, 2014, 63(7): 070204-1-6. (in Chinese)

[24] KANG B S, REN F, WANG L, et al.. Electrical detection of immobilized proteins with ungated AlGaN/GaN high-electron-mobility transistors [J]. Appl. Phys. Lett., 2005, 87(2): 023508-1-3.

[25] KANG B S, WANG H T, LELE T P, et al.. Prostate specific antigen detection using AlGaN/GaN high electron mobility transistors [J]. Appl. Phys. Lett., 2007, 91(11): 112106-1-3.

[26] WANG Y L, CHU B H, CHEN K H, et al.. Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors [J]. Appl. Phys. Lett., 2009, 94(24): 243901-1-3.

[27] SCHWARZ S U, LINKOHR S, LORENZ P, et al.. DNA-sensor based on AlGaN/GaN high electron mobility transistor [J]. Phys. Stat. Sol. (a), 2011, 208(7): 1626-1629.

[28] THAPA R, ALUR S, KIM K, et al.. Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection [J]. Appl. Phys. Lett., 2012, 100(23): 232109-1-4.

[29] 薛伟,李加东,谢杰,等. 高灵敏度AlGaN/GaN HEMT生物传感器设计及制作 [J]. 微纳电子技术, 2012, 49(7): 425-432.

    XUE W, LI J D, XIE J, et al.. Design and fabrication of high sensitivity AlGaN/GaN HEMT biosensors [J]. Micronanoelectron. Technol., 2012, 49(7): 425-432. (in Chinese)

[30] LEE H H, BAE M, JO S H, et al.. AlGaN/GaN high electron mobility transistor-based biosensor for the detection of C-reactive protein [J]. Sensors, 2015, 15(8): 18416-18426.

[31] LI J D, CHENG J J, MIAO B, et al.. Label free electrical detection of prostate specific antigen with millimeter grade biomolecule-gated AlGaN/GaN high electron mobility transistors [J]. Microsyst. Technol., 2015, 21(7): 1489-1494.

[32] SO H, LIM J, SENESKY D G. Continuous V-grooved AlGaN/GaN surfaces for high-temperature ultraviolet photodetectors [J]. IEEE Sens. J., 2016, 16(10): 3633-3639.

[33] DZUBA J, VANKO G, DRK M, et al.. AlGaN/GaN diaphragm-based pressure sensor with direct high performance piezoelectric transduction mechanism [J]. Appl. Phys. Lett., 2015, 107(12): 122102.

[34] LEE C T, CHIU Y S. Photoelectrochemical passivated ZnO-based nanorod structured glucose biosensors using gate-recessed AlGaN/GaN ion-sensitive field-effect-transistors [J]. Sens. Actuator B: Chem., 2015, 210: 756-761.

[35] DOGAR S, KHAN W, KIM S D. Ultraviolet photoresponse of ZnO nanostructured AlGaN/GaN HEMTs [J]. Mater. Sci. Semicond. Process., 2016, 44: 71-77.

[36] ZHOU H, GUI P B, YU Q H, et al.. Self-powered, visible-blind ultraviolet photodetector based on n-ZnO nanorods/i-MgO/p-GaN structure light-emitting diodes [J]. J. Mater. Chem. C, 2015, 3(5): 990-994.

[37] AL-HARDAN N H, HAMID M A A, AHMED N M, et al.. A study on the UV photoresponse of hydrothermally grown zinc oxide nanorods with different aspect ratios [J]. IEEE Sens. J., 2015, 15(12): 6811-6818.

[38] 北京工业大学. 基于微动元调制 GaN HEMT 沟道电流的红外探测器: 中国, CN102636261A [P]. 2012-08-15.

    Beijing University of Technology. Jogging element-based infrared detector for modulating GaN HEMT channel current: China, CN102636261A [P]. 2012-08-15. (in Chinese)

[39] 北京工业大学. 基于HEMT结构调制沟道电流的光探测器: 中国, CN104409463A [P]. 2015-03-11.

    Beijing University of Technology. Optical detector for modulating channel current based on HEMT (High Electron Mobility Transistor) structure: China, CN104409463A [P]. 2015-03-11. (in Chinese)

[40] 北京工业大学. 一种基于高电子迁移率晶体管的光谱探测器及其制备方法: 中国, CN104900745A [P]. 2015-09-09.

    Beijing University of Technology. Spectrum detector based on high electron mobility transistor and preparation method thereof: China, CN104900745A [P]. 2015-09-09. (in Chinese)

朱彦旭, 王岳华, 宋会会, 李赉龙, 石栋. 基于GaN 基HEMT结构的传感器件研究进展[J]. 发光学报, 2016, 37(12): 1545. ZHU Yan-xu, WANG Yue-hua, SONG Hui-hui, LI Lai-long, SHI Dong. Progress of Sensor Elements Based on GaN-based HEMT Structure[J]. Chinese Journal of Luminescence, 2016, 37(12): 1545.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!