光学 精密工程, 2017, 25 (3): 663, 网络出版: 2017-04-18   

静电场辅助的微压印光刻技术

Electrostatic field assisted micro imprint lithography technology
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
3 中国人民解放军63861 部队, 吉林 白城 137001
4 中国科学院 西安光学精密机械研究所, 陕西 西安 710119
摘要
介绍了一种静电场辅助的新型微压印光刻技术, 并对其工艺过程进行了深入的理论研究。首先, 采用数值仿真软件COMSOLTM Multiphysics, 建立了静电场辅助的压印光刻瞬态仿真分析模型, 讨论了不同时域微结构的演化过程。然后, 详细分析了微结构的成型与仿真实验参数的定性关系, 发现: 适当地减小极板间距、模板凸起结构周期, 同时增加模板的凸起高度、初始聚合物薄膜厚度和电压有助于微纳结构的成型。最后, 通过仿真实验参数优化, 得到了带有31 μm中空结构的球冠微结构。与传统压印方法相比, 静电场辅助的微压印技术工艺过程简单且成本较低, 能够广泛应用于微电子机械系统、光子学、遗传学和组织系统等。
Abstract
In this paper, a new type of micro imprint lithography assisted by electrostatic field was introduced, and an in-depth theoretical research was conducted on its technological process. First, numerical simulation software (COMSOLTM Multiphysics) was adopted to establish a transient simulation model for electrostatic filed assisted imprint lithography and discussed the evolution process of micro structure in different time domains. Then a detailed analysis was conducted on the qualitative relationship between the micro structure formation and simulation experiment parameters, during which it was found that properly reducing the polar plate spacing, template bulging period and increasing the bulging height, initial polymer film thickness and voltage were beneficial to formation of the micro-nano structure. Finally, a spherical cap micro structure with 31 μm hollow structure was obtained through optimization of the simulation experiment parameters. Compared with traditional imprint method, the electrostatic field assisted micro imprint, which is characterized by simple process and lower cost, can be widely applied to the micro electronic and mechanical system, photonics, genetics and tissue system etc.
参考文献

[1] WHITESIDES G M. The origins and the future of microfluidics [J]. Nature, 2006, 442(442): 368-373.

[2] 张运海, 杨皓旻, 孔晨晖.激光扫描共聚焦光谱成像系统[J].光学 精密工程, 2014, 22(6): 1446-1453.

    ZHANG Y H, YANG H M, KONG CH H. Spectral imaging system on laser scanning confocal microscopy [J].Opt. Precision Eng., 2014, 22(6): 1446-1453. (in chinese)

[3] 朱京涛, 岳帅鹏, 涂昱淳, 等.氮气反应溅射制备软X射线Co/Ti多层膜[J].光学 精密工程, 2015, 23(1): 10-14.

    ZHU J T, YUE SH P, TU Y CH, et al.. Preparation of Co/Ti multilayer in soft X-ray region by nitrogen reactive sputtering [J].Opt. Precision Eng., 2015, 23(1): 10-14.(in chinese)

[4] 叶鑫, 倪锐芳, 黄进, 等.自组装法制备的亚波长纳米多孔二氧化硅薄膜[J].光学 精密工程, 2015, 23(5): 1233-1239.

    YE X, NI R F, HUANG J, et al.. Sub-wavelength nano-porous silica anti-reflection coatings fabricated by dip coating method [J]. Opt. Precision Eng., 2015, 23(5): 1233-1239. (in chinese)

[5] TOBEY A C. Wafer stepper steps up yield and resolution in IC lithography [J]. Electronics, 1979, 52(17): 109-112.

[6] HUBRE H, SCHEUNEMANN U. Application of X-ray step-persusing optical alignment for synchrotron based X-ray lithography [J]. Microelectronic Engineering, 1989, 9(1-4): 151-154.

[7] EHRFLD, MUNCHMEYE D. Three-dimensional micro-fabrication using synchrotron radiation [J]. Nulear Instruments and Methods in Physic Research, 1991, 303(3): 523-526.

[8] LEE Y, GOUGH R A, KING T J, et al.. Mcgill. Maskless ion beam lithography system [J]. Microelectronic Engineering, 1999, 46(1-4): 469-472.

[9] KIM H S, KIM Y C, KIM D W, et al.. Low energy electron beam microcolumn lithography [J]. Microelectronic Engineering, 2006, 83 (4-9): 962-967.

[10] ACEVSKA J, STEFKOV G, PETKOVSKA R, et al.. Step and flash imprint lithography template fabrication for emerging market applications [C]. Proceedings of SPIE, 2007, 808(12): 1624-1630.

[11] CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of sub-25nm vias and trenches in polymers [J]. Appl. Phys. Lett., 1995, 67(67): 3114-3116.

[12] CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint lithography with 25-nanometer resolution [J]. Sci., 1996, 272(272): 85-87.

[13] CHOU S Y, KRAUSS P R, RENSTROM P J. Nanoimprint lithography [J]. J. Vac. Sci. Technol. B., 1996, 14(6): 4129-4133.

[14] KRAUSS P R, CHOU S Y. Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probeAppl [J]. Phys. Lett., 1997, 71(21): 3174-3176.

[15] VRATZOV B, FUCHS A, LEMME M, et al.. Large scale ultraviolet-based nanoimprint lithography [J]. J. Vac. Sci. Technol. B, 2003, 21(6): 2760-2764.

[16] LANDIS S, PIROT M, LEE R, et al.. Silicon solar cells efficiency improvement with Nano Imprint Lithography technology [J]. Microelectronic Engineering, 2013, 111(11): 224-228.

[17] SCHAFFER E, THURN-ALBRECHT T, RUSSELL T P, et al.. Electrically induced structure formation and pattern transfer [J]. Nature, 2000, 403(403): 874-877.

[18] RUHI V, ASHUTOSH S, KAJARI K, et al.. Electric field induced instability and pattern formation in thin liquid films [J]. Langmuir, 2005, 21(8): 3710-3721.

[19] LEE S H, JEONG H E, PARK M C, et al.. Fabrication of hollow polymeric microstructures for shear-protecting cell containers [J]. Adv. Mater., 2008, 20(4): 788-792.

[20] LI H, YU W, ZHANG L, et al..Simulation and modelling of sub-30 nm polymeric channels fabricated by electrostatic induced lithography [J]. RSC Adv., 2013, 3(29): 11839-11845.

[21] LIU G, YU W, LI H, et al.. Microstructure formation in a thick polymer by electrostatic-induced lithography [J]. J. Micrmesh. Microeng., 2013, 23(3): 35018-35025.

[22] SETHIAN J A. Level Set Methods and Fast Marching Methods [M]. Cambridge: Cambridge University Press, 1999.

刘民哲, 王泰升, 李和福, 刘震宇, 陈佐龙, 鱼卫星. 静电场辅助的微压印光刻技术[J]. 光学 精密工程, 2017, 25(3): 663. LIU Min-zhe, WANG Tai-sheng, LI He-fu, LIU Zhen-yu, CHEN Zuo-long, YU Wei-xing. Electrostatic field assisted micro imprint lithography technology[J]. Optics and Precision Engineering, 2017, 25(3): 663.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!