光学 精密工程, 2016, 24 (9): 2134, 网络出版: 2016-11-14   

纳米精度二维工作台测量镜的面形误差在线检测

Online detection of profile deviation for nano precision 2-D stage mirror
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 101408
3 北京航空航天大学, 北京 100191
摘要
针对二维工作台测量镜本身的面形误差以及装调等因素引起面形变化对二维工作台定位精度的影响, 提出了一种用于纳米精度二维工作台测量镜面形误差的在线检测方法。利用两路激光干涉仪检测面形微分数据的基本原理, 分析了零点误差和积分累计误差对测量镜面形误差检测的影响并提出了改进方法。利用三路激光干涉仪组成两组不等跨度的检测机构, 得到两组工作台测量镜面形的原始数据, 通过这两组数据之间的关系修正跨度间的面形细节误差, 得到了精确的测量镜面形误差量。对此方法进行了理论推导、仿真计算和实验验证, 并将结果与Zygo干涉仪测量得到的离线检测结果进行了对比, 结果显示其差异在±10 nm之间, 且趋势有较好的一致性。 得到的结果验证了提出的方法可正确测量和真实地还原测量镜的面形误差。
Abstract
For the profile deviation of a stage mirror itself and the profile change caused by the alignment of 2D stage position, an online detection method for the profile deviation of a nano precision 2-D stage mirror was presented. The basic principle of detecting profile differential data with two interferometers was proposed. The influences of zero error and integral error on the measurement were analyzed and a method to improve the measuring precision was put forward. Two sets of original data of the mirror profile were obtained by two sets of detectors with different spans composed by three interferometers. Through the relationship between the two sets of data, the detail profile deviation between the spans was modified. The theoretical calculation, simulation and experiments for the proposed method were performed, and obtained results were compared with that of off-line measurement with a Zygo interferometer. The results show that the most difference in test results is between ±10 nm, and the trend has better consistency, which verify that this measuring method could measure the profile deviation of stage mirrors correctly and could restore its surface errors truly.
参考文献

[1] 崔继文, 刘雪明, 谭久彬. 超精密级二维工作台的自标定[J]. 光学 精密工程, 2012, 20(9): 1960-1966.

    CUI J W, LIU X M, TAN J B. Self-calibration for 2-D ultra-precision stage[J]. Opt. Precision Eng., 2012, 20(9): 1960-1966.(in Chinese)

[2] 张昔峰, 黄强先, 袁钰, 等. 具有角度修正功能的大行程二维纳米工作台[J]. 光学 精密工程, 2013, 21(7): 1811-1817.

    ZHANG X F, HUANG Q X, YUAN Y, et al.. Large stroke 2-DOF nano-positioning stage with angle error correction [J]. Opt. Precision Eng., 2013, 21(7): 1811-1817.(in Chinese)

[3] GAO Z Y, HU J C, ZHU Y, et al.. A new 6-degree-of-freedom measurement method of X-Y stages based on additional information [J]. Precision Engineering, 2013, 37(3): 606-620.

[4] GROOT P J D, BADAMI V G. Revelations in the Art of Fringe Counting: The State of the Art in Distance Measuring Interferometry [M]. Springer Berlin Heidelberg, 2014; 785-790.

[5] 高忠华, 陈锡侯, 彭东林. 时栅角位移传感器在线自标定系统[J]. 光学 精密工程, 2015, 23(1): 93-101.

    GAO ZH H, CHEN X H, PENG D L.Online self-calibration system for time grating angular displacement sensor [J]. Opt. Precision Eng., 2015, 23(1): 93-101.(in Chinese)

[6] 糜小涛, 于宏柱, 于海利, 等. 大型衍射光栅刻划机拉杆结构的分析与改进[J]. 光学 精密工程, 2015, 23(3): 745-752.

    MI X T, YU H ZH, YU H L, et al.. Analysis and improvement of rod structures for large diffraction grating ruling engines [J]. Opt. Precision Eng., 2015, 23(3): 745-752.(in Chinese)

[7] ZHAO Y. Ultra-high Precision Scanning Beam Interference Lithography and Its Application-spatial Frequency Multiplication [D]. Cambrige: Massachusetts Institute of Technology, 2008.

[8] SCHULZ G, SCHWIDER J. Precise measurement of planeness [J]. Appl. Optics, 1967, 6(6): 1077-1084.

[9] KCHEL M F. A new approach to solve the three flat problem [J]. Optik-International Journal for Light and Electron Optics, 2001, 112(9): 381-391.

[10] GRIESMANN U, WANG Q, SOONS J. Three-flat tests including mounting-induced deformations [J]. Optical Engineering, 2007, 46(9): 093601.

[11] SU D-Q, TIAN W, MIAO E-L, et al.. Absolute three-flat test in vertical direction with gravity deformation compensation [J]. Acta Photonica Sinica, 2015, 44(11): 1112003.

[12] 徐洋, 唐锋, 王向朝, 等. 平面面形绝对检验技术测量误差分析[J]. 中国激光, 2011, 38(10): 204-209.

    XU Y, TANG F, WANG X CH, et al.. Measurement error analysis of absolute flatness test [J]. Chinese Journal of Lasers, 2011, 38(10): 204-209.(in Chinese)

[13] ELSTER C, WEING R I, SCHULZ M. Coupled distance sensor systems for high-accuracy topography measurement: Accounting for scanning stage and systematic sensor errors [J]. Precision Engineering, 2006, 30(1): 32-38.

[14] SCHULZ M, ELSTER C. Traceable multiple sensor system for measuring curved surface profiles with high accuracy and high lateral resolution [J]. Optical Engineering, 2006, 45(6): 060503.

[15] KAMIYA S. Method and apparatus for correcting linearity errors of a moving mirror and stage: United States, 5790253 [P]. 1998.

[16] 何乐, 王向朝, 马明英. 一种测量光刻机工件台方镜不平度的新方法[J]. 中国激光, 2007, 34(4): 519-524.

    HE L, WANG X CH, MA M Y. Non-flatness measurement of wafer stage mirrors in a step-and-scan lithographic tool [J]. Chinese Journal of Lasers, 2007, 34(4): 519-524.(in Chinese)

[17] MONTOYA J. Toward Nano-accuracy in Scanning Beam Interference Lithography [D]. Cambrige: Massachusetts Institute of Technology 2006.

刘兆武, 李文昊, 王敬开, 姜珊, 宋莹, 潘明忠, 巴音贺希格. 纳米精度二维工作台测量镜的面形误差在线检测[J]. 光学 精密工程, 2016, 24(9): 2134. LIU Zhao-wu, LI Wen-hao, WANG Jing-kai, JIANG Shan, SONG Ying, PAN Ming-zhong, Bayanheshig. Online detection of profile deviation for nano precision 2-D stage mirror[J]. Optics and Precision Engineering, 2016, 24(9): 2134.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!