作者单位
摘要
中国科学院上海光学精密机械研究所,上海 201800
掺镱大模场光子晶体光纤在高峰值功率超快激光放大器中有着重要的应用价值,其研究得到了广泛关注。首先简要介绍了国内外掺镱大模场光子晶体光纤的研究进展,阐述了掺镱大模场光子晶体光纤的基本设计思路,对比说明了保偏型掺镱光子晶体光纤的设计制备方法。重点介绍了近十年来中国科学院上海光学精密机械研究所在掺镱大模场光子晶体光纤方面的研究进展。包括掺镱大模场光子晶体光纤的纤芯折射率大小和均匀性控制、光子晶体光纤微结构控制等关键技术。采用自主研制的四种芯径为40~100 μm的掺镱大模场光子晶体光纤开展了皮秒脉冲激光放大实验。利用40 μm芯径的保偏掺镱光子晶体光纤实现了平均功率为100 W、光束质量因子(M2)小于1.4的稳定输出,偏振消光比为12 dB。利用100 μm芯径的保偏掺镱大模场光子晶体光纤实现了M2小于1.5的高光束质量脉冲放大。上述研究为掺镱大模场光子晶体光纤的国产化应用奠定了基础。
光纤光学 掺镱石英玻璃 大模场光子晶体光纤 皮秒脉冲激光放大 光纤激光 
中国激光
2024, 51(1): 0106001
作者单位
摘要
1 中国工程物理研究院材料研究所, 四川 绵阳 621907
2 表面物理与化学重点实验室, 四川 绵阳 621907
3 中国科学院上海光学精密机械研究所, 上海 201800
采用熔融-淬冷法制备了Tb3+掺杂锂铝硅酸盐闪烁玻璃, 用紫外激发光谱、 发射光谱及荧光寿命表征了光致发光性能, 用X射线和阴极射线激发测试了辐射致发光性能。 研究结果表明: 低Tb3+掺杂浓度时, 随着其浓度增大, Tb3+间的交叉弛豫增加导致了5D3→7Fj跃迁的能量逐渐向5D4→7Fj迁移转变, 5D3激发态的荧光寿命和发射强度均明显下降, 5D4-7Fj发射强度逐渐增大。 较高Tb3+浓度时, 其浓度继续增加会提升非辐射比例, 是荧光寿命降低和荧光猝灭的最主要原因。 比较光致发光和辐照致发光性能, 发现随着激发源的能量上升, 会增加激发态5D3能级向5D4能级的能量转移, 同时, 由于玻璃的密度低会导致辐照致发光效率随激发源的能量上升而下降。
Tb3+掺杂 锂铝硅酸盐玻璃 光致发光 辐照致发光 Tb3+ ions doped Lithium aluminosilicate glass Photoluminescence Radio luminescence 
光谱学与光谱分析
2021, 41(6): 1863
作者单位
摘要
1 中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
近年来,掺镱大模场光子晶体光纤由于在高峰值功率皮秒超快激光放大器方面的重要应用而受到广泛关注。简要分析了掺镱大模场光子晶体光纤的研制难点,介绍了国内外掺镱大模场光子晶体光纤的研究进展,以及应用于掺镱大模场光子晶体光纤制备的掺镱石英玻璃芯棒制备方法及其光学、光谱性能,重点介绍了中国科学院上海光学精密机械研究所基于溶胶-凝胶工艺制备大直径、低数值孔径掺镱石英玻璃芯棒玻璃,以及大模场掺镱光子晶体光纤的制备及其用于皮秒脉冲激光放大的研究进展。最后对掺镱大模场光子晶体光纤的研发及应用进行了总结及展望。
光纤光学 掺镱石英玻璃 大模场面积光子晶体光纤 皮秒脉冲激光放大 
激光与光电子学进展
2019, 56(17): 170602
Meng Wang 1,2Fan Wang 1,2Suya Feng 1,*Chunlei Yu 1,**[ ... ]Lili Hu 1,***
Author Affiliations
Abstract
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
A large-mode-area (LMA) ytterbium-doped photonic crystal fiber (PCF) with core NA of 0.034 and core diameter of 50 μm was made by the stack-and-draw technique. The core is formed by Yb3+/Al3+/F /P5+ co-doped silica glass containing 0.09 mol% Yb2O3 with an absorption coefficient at 976 nm up to 3.2 dB/m. The core glass with homogeneous distribution of Yb3+ ions and refractive index difference of 4 × 10 4 compared with pure silica was prepared by the sol-gel method and heat homogenization at 2000°C. Laser power amplification of this LMA PCF was studied using a seed source of 21 ps pulse duration and 48.7 MHz repetition rate at 1030 nm wavelength. With pump power of 520 W, a maximum 272 W (266 kW peak power) quasi-single-mode laser output with M2 of 2.2 was achieved in a 4.7 m fiber length bent at a diameter of 47 cm with slope efficiency of 52%, and no obvious mode instability, stimulated Raman scattering, or thermal damage on the end facet of the fiber were observed.
140.3538 Lasers, pulsed 140.3615 Lasers, ytterbium 140.3510 Lasers, fiber 160.5690 Rare-earth-doped materials 
Chinese Optics Letters
2019, 17(7): 071401
蒋小波 1,2,*邹雅 1,2韩帅 2,3王聪娟 2[ ... ]杨秋红 1
作者单位
摘要
1 上海大学材料科学与工程学院, 上海 200444
2 中国科学院上海光学精密机械研究所高功率激光单元技术实验室, 上海 201800
3 中国科学院大学, 北京 100049
在还原气氛下制备了Sn 2+掺杂SiO2-B2O3-Gd2O3-La2O3玻璃,并测试了该玻璃的密度、吸收光谱、光致发光、荧光寿命和X射线激发下的辐照发光。研究结果表明,在SiO2-B2O3-La2O3玻璃系统中,随着Sn 2+浓度的增大,紫外吸收截止波长红移, 荧光强度先增大后因浓度淬灭而减小,在Sn 2+浓度为0.3%时达到最大。随着Gd2O3逐渐取代La2O3,玻璃的密度增大,Sn 2+的荧光寿命变短,但未发现Gd 3+对Sn 2+的敏化增强作用。在X射线激发下,Sn 2+的辐照发光强度随着Gd2O3浓度的增大而增大,且不因Gd 3+浓度淬灭而减小,说明在X射线激发下,Gd 3+和Sn 2+之间可能存在能量传递。
材料 Sn 2+掺杂 闪烁玻璃 高Gd2O3 能量传递 
光学学报
2018, 38(8): 0816002
Author Affiliations
Abstract
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
A large-mode-area neodymium-doped silicate photonic bandgap fiber was theoretically designed and experimentally demonstrated. The relative index step between the high-index rods and the background glass was ~0.5%, which is the lowest cladding index difference reported on rare-earth-doped all-solid photonic bandgap fibers to our knowledge. An output power of 3.6 W with a slope efficiency of 31% was obtained for a 100-cm-long fiber.
060.2280 Fiber design and fabrication 060.3510 Lasers, fiber 060.5295 Photonic crystal fibers 
Chinese Optics Letters
2018, 16(8): 080601
尹圣楠 1,2杨科 1,2韩帅 1,2周秦岭 1[ ... ]陈丹平 1,*
作者单位
摘要
1 中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
采用SiCl4水解法制备了镱铝共掺石英光纤纤芯原料粉,在O2氛围下1100 ℃烧结除羟基处理后,原料粉析出了α-石英相。对镱铝共掺硅酸凝胶进行了常温老化和高压釜高温高压老化处理。测试结果表明,老化处理有效地抑制了镱铝共掺石英玻璃原料粉的析晶行为,Yb 3+的荧光强度和荧光寿命得到提高,说明高压釜处理可缩短老化处理时间并提高荧光性能,是制备镱铝共掺石英玻璃原料粉的重要工艺。
材料 抑制析晶 凝胶老化 Yb 3+/Al 3+共掺石英玻璃原料粉 
光学学报
2017, 37(8): 0816001
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing, China
We produce a maximum 1.45 W laser output at 1064 nm using a neodymium-doped silicate glass fiber that has a rectangular core with dimensions of 6.3 μm×31.5 μm. The measured divergence angles of the output laser in two dimensions are 3.22° and 1.76°, respectively. The output power is stable and limited only by the available pump power.
060.2280 Fiber design and fabrication 060.3510 Lasers, fiber 140.3530 Lasers, neodymium 160.2290 Fiber materials 
Chinese Optics Letters
2016, 14(1): 011402
作者单位
摘要
中国科学院上海光学精密机械研究所, 上海 201800
有源光子晶体光纤的芯径较大,主要用于实现高峰值功率(高能量)的脉冲放大输出。目前只有NKT Photonics公司可提供商品化的掺镱(Yb3+)有源光子晶体光纤,其最大芯径约为85 μm。光子晶体光纤的制作主要受光纤预制棒中纤芯尺寸的限制。为实现百微米芯径的光子晶体光纤,预制棒中纤芯材料的直径须达到5 mm,目前较难实现。中国科学院上海光学精密机械研究所立足于自身在材料制备方面的优势,利用溶胶-凝胶方法制作了直径大于5 mm的掺Yb3+石英棒,并拉制出纤芯直径为110 μm的有源光子晶体光纤。对拉制的掺Yb3+光子晶体光纤进行性能测试。当波长为915 nm时,该光纤的吸收系数为8 dB/m,此时采用较短的光纤(约为1 m)即可充分吸收抽运光,降低了脉冲放大过程中的非线性效应。对光子晶体光纤进行了皮秒级脉冲放大,种子光的波长为1030 nm,输出功率为10 W,脉宽为21 ps,重复频率为10 MHz。在抽运功率为590 W(抽运波长为976 nm)条件下,实现了功率为309 W的脉冲放大输出,峰值功率高达1.47 MW,放大效率为52%。图1为光子晶体光纤截面及光纤的功率放大曲线。自制光子晶体光纤的放大效率低于NKT Photonics公司光子晶体光纤的放大效率(60%)的主要原因为自制光子晶体光纤对抽运光的耦合效率偏低。但NKT Photonics公司提供的光子晶体光纤仅应用于功率小于100 W的脉冲放大输出。当脉冲输出功率为309 W时,检测光谱性能,未发现明显的非线性效应。图2为检测到的放大脉冲序列及脉宽。本课题组成功制作了百微米芯径的掺Yb3+光子晶体光纤,实现了功率为309 W、重复频率为10 MHz的皮秒级脉冲放大输出。
中国激光
2016, 43(11): 1115001
作者单位
摘要
中国科学院上海光学精密机械研究所, 上海 201800
中国激光
2015, 42(8): 0819001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!