作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 长春 130033
为更好地评价平面全息光栅曝光系统的性能,了解干涉条纹相位变化对光栅制作的影响,基于曝光量表达式,结合光栅掩模槽形二元模型,采用理论分析和数值计算的方法,分析了条纹相位变化对曝光对比度、光栅掩模槽形和曝光量相位的影响。各种形式的干涉条纹低频漂移均会降低曝光对比度,导致掩模槽形的可控性下降,其影响具有一致性;为保证曝光对比度达到0.95,低频漂移均方根值应控制在0.05个条纹周期以内;小幅值高频振动对光栅曝光的影响可以忽略;低频漂移造成的曝光量相位误差不影响光栅的衍射特性。结果表明,为获取合格的光栅掩模,应控制光刻胶非线性和曝光量的匹配关系,并将干涉条纹低频漂移均方根值控制在1/20条纹周期以内。可将其作为评价全息光栅曝光系统稳定性的重要指标。
光栅 光栅曝光 数值计算 条纹相位变化 曝光对比度 掩模槽形 grating grating exposure numerical calculation fringe’s phase change exposure contrast grating mask profile 
激光技术
2016, 40(3): 339
作者单位
摘要
1 中科院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
扫描干涉场曝光系统中干涉条纹周期的测量误差是影响曝光过程中相位拼接的主要因素。为制作符合离子束刻蚀要求的高质量光栅掩模,建立了条纹周期测量误差与扫描曝光对比度关系的数学模型,利用光刻胶在显影过程中的非线性特性,建立了扫描干涉场曝光光栅的显影模型,给出了光栅掩模槽形随周期测量误差的变化规律,并进行了实验验证。结果表明:周期测量误差不仅会使掩模槽形变差,还会引起槽形在空间上的变化。在周期测量的相对误差一定时,相位拼接误差与相邻扫描间的步进间隔成正比,与干涉条纹周期成反比。在显影条件一定、曝光光束束腰半径1 mm、曝光步进间隔0.8 mm、曝光线密度1800 gr/mm 时,周期测量误差控制在139 ppm以内,理论上可以制作槽底洁净无残胶、槽形均匀的光栅掩模。
光栅 扫描干涉场曝光系统 周期测量误差 槽形 
光学学报
2014, 34(4): 0405003
作者单位
摘要
成都精密光学工程研究中心, 成都 610041
通过建立环形抛光的去除模型,从理论上分析了转速比、槽形、元件摆动对于抛光结果的影响,并分析了中频误差产生的原因。模拟结果表明: 转速比的差异会产生较大的低频误差,而中频误差会随着低频误差的降低而降低; 槽形是中频误差的主要来源,复杂的非对称不规律槽形使抛光路径复杂化,降低中频误差; 同时元件的小幅度摆动能够使抛光更加均匀,减小定心式抛光造成的元件表面规则状纹路结构,从而有效减小元件的中频误差。
环形抛光 中频误差 模拟 转速比 槽形 continuous polishing mid-spatial frequency error simulation rotating ratio groove shape 
强激光与粒子束
2013, 25(12): 3307
作者单位
摘要
1 中国科学院 长春光学机密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
为分析光栅槽形形成的基本原理及槽形随光刻胶特性曲线的演化规律,建立了显影过程中光栅掩模槽形形成的演化模型。基于光刻胶溶解速率在不同曝光量区间的变化,将光刻胶特性曲线分成3个不同区域并分析各区域在光栅掩模槽形形成中的作用,讨论了在不同光刻胶特性曲线条件下光栅掩模槽形的演化规律。结果表明:当光刻胶非线性效应显著时,掩模槽形易形成矩形或梯形,此时槽深由原始胶厚决定;当光刻胶线性效应较显著时,槽形形成正弦形同时槽深有所减小。该模型正确反映了光栅槽形随光刻胶特性曲线变化的演化规律,为通过控制光刻胶特性曲线制作多种掩模槽形提供了理论依据及方法。
全息光栅 非线性效应 槽深 掩模槽形 光刻胶 holographic grating nonlinearity effect groove depth grating mask photoresist 
光学 精密工程
2012, 20(11): 2380
作者单位
摘要
成都精密光学工程研究中心, 成都 610041
根据环形抛光的加工特点,研究了大口径反射元件的环形抛光加工工艺。在4 m环抛机上进行了610 mm×440 mm×85 mm的大口径反射元件加工工艺实验,研究了修正盘及工件盘转速与元件面形的关系、修正盘及工件盘位置与元件面形的关系、沥青盘槽形与元件面形的关系。研究结果表明,通过对修正盘及工件盘转速、修正盘及工件盘位置、沥青盘槽形等工艺参数的优化控制,能够得到大口径反射元件面形的高效收敛,元件最高面形精度优于λ/6(λ=632.8 nm),验证了加工工艺的有效性。
环形抛光 大口径反射元件 工艺优化 转速 槽形 annular lapping large-aperture reflective component process optimization rotating speed groove shape 
强激光与粒子束
2012, 24(7): 1689
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院 研究生院,北京 100049
通过刻划工艺控制光栅槽形零级面宽度,使-1级和0级衍射效率同时达到期望值是激光器调谐光栅研制中的技术难题。基于光栅电磁场理论,利用光栅非异常区入射波长与光栅周期之比λ/d≈1.414附近较宽波段范围内TM偏振波的衍射效率变化梯度小,而且同一波长的衍射效率随闪耀角增大呈单调递增或随槽顶角增大呈单调递减趋势的特性,给出了-1级振荡0级输出激光器调谐光栅的全三角槽形模型及设计方法。该方法用常规三角槽形光栅即可实现任意比值的-1级与0级衍射能量分布,避免了以往通过控制类梯形槽形零级面宽度来制作此类光栅的工艺不确定性,降低了制作难度。应用该模型设计并制作了-1级衍射效率为65%的0级输出激光器调谐光栅,其在10.6 μm处的衍射效率误差为0.6%。该方法还适用于-1级振荡-1级输出激光器调谐光栅的设计,实现了两类激光器谐振光栅在设计方法以及制作工艺上的统一。
激光器调谐光栅 非异常区 TM偏振 全三角槽形模型 laser resonator gratings non-anomaly region TM polarization triangle model 
光学 精密工程
2010, 18(4): 779
作者单位
摘要
上海理工大学 上海市现代光学系统重点实验室,上海 200093
为了研究亚波长光栅表面上薄膜的生长特性,以及镀膜对亚波长光栅物理特性的影响,对亚波长正弦槽形光栅表面上镀的Au膜进行了实验研究和理论分析。实验发现,当光栅槽深为80 nm,Au膜为100 nm时,薄膜的生长是仿形生长,光栅的正弦槽形特征和周期都基本没有发生变化,但镀膜后,出现光栅的正弦占空比增加、槽的深度减小以及槽深的均匀性变差等现象。对引起这种现象的原因进行了分析,提出了由于光栅微结构而给薄膜生长带来的阴影效应现象,并分析了正弦占空比增加对导模共振滤光片光谱特性的影响。
薄膜 亚波长光栅 薄膜生长 占空比 正弦槽形 导模共振 
中国激光
2009, 36(11): 3060
作者单位
摘要
1 南京信息职业技术学院微电子工程系,江苏,南京,210046
2 苏州大学信息光学工程研究所,江苏,苏州,215006
为了研究镀铬对光刻胶光栅掩模槽形的影响,分析了铬膜反射引起的沿垂直光刻胶表面的驻波效应.分析表明驻波效应的对比度为0.28,不能忽略.将镀铬基底与普通的玻璃基底的掩模槽形对比,发现明显的不同.槽形模拟表明这种不同是由于驻波效应引起的.驻波效应会使掩模形成阶梯结构,且阶梯高度差正好为驻波波节间距离.
衍射光栅 全息光栅掩模 铬膜 槽形 
光学仪器
2007, 29(6): 81
武军霞 1,2夏佳文 1杨建成 1,2刘伟 1,2[ ... ]刘勇 1
作者单位
摘要
1 中国科学院,近代物理研究所,甘肃,兰州,730000
2 中国科学院,研究生院,北京,100039
通过Fokker-Planck方程,对拟在HIRFL-CSRm上建造的纵向槽形滤波器(notch filter)的冷却机理进行了研究,得出了冷却原理及冷却时间的表达式,并对影响冷却时间和冷却效果的因素进行了模拟和讨论,模拟结果表明,噪信比越小,冷却时间越短,冷却效果越好;带宽越宽冷却越快.该研究为具体纵向冷却系统的设计和优化提供了依据.
随机冷却 槽形滤波 Fokker-Planck方程 冷却时间 Stochastic cooling Fokker-Planck equation Notch filter Cooling time 
强激光与粒子束
2004, 16(1): 125
作者单位
摘要
中国科学院上海光机所, 上海 201800
本文报道用自行设计的扫描隧道显微镜对光盘预刻槽进行测量。为观察大范围的结构,我们设计了一个新的大范围扫描头(~6 μm),并成功地观察到预刻的槽形,给出了光盘预刻槽的灰度图像、三维轮廓像及剖面轮廓。为评价预刻的槽形提出了一种有效的测量手段。
光盘预刻槽 槽形测量 扫描隧道显微镜 
中国激光
1993, 20(11): 834

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!