作者单位
摘要
1 北方民族大学 计算机科学与工程学院, 宁夏银川75002
2 西安电子科技大学 电子工程学院,陕西西安710071
由于不同的照明条件、复杂的大气环境等因素,相同端元的光谱特征在图像的不同位置呈现出可见的差异,这种现象被称为端元的光谱变异性。在相当大的场景中,端元的变异性可能很大,但在适度的局部同质区内,变异性往往很小。扰动线性混合模型(Perturbed Linear Mixing Model,PLMM)在解混的过程中可以减轻端元变异性造成的不利影响,但是对缩放效应造成的变异性的处理能力较弱。为此,本文改进了扰动线性混合模型,引入了尺度因子以处理缩放效应造成的变异性,并结合超像素分割算法划分局部同质区,然后设计出基于局部同质区共享端元变异性的解混算法(Shared Endmember Variability in Unmixing,SEVU)。与扰动线性混合模型,扩展线性混合模型(Extended Linear Mixing Model,ELMM)等算法相比,所提SEVU算法在合成数据集上平均端元光谱角距离(mean Spectral Angle Distance, mSAD)和丰度均方根误差(abundance Root Mean Square Error, aRMSE)最优,分别为0.085 5和0.056 2;在Jasper Ridge和Cuprite真实数据集上mSAD是最优的,分别为0.060 3和0.100 3。在合成数据集和两个实测数据集上的实验结果验证了SEVU算法的有效性。
高光谱图像 混合像元分解 光谱变异性 扰动线性混合模型 局部同质区 hyperspectral image unmixing spectral variability perturbed linear mixing model local homogeneous region 
光学 精密工程
2024, 32(4): 578
作者单位
摘要
沈阳理工大学 信息科学与工程学院, 沈阳 110159
端元提取是高光谱遥感图像混合像元分解的关键步骤。传统线性端元提取方法忽略了像元内地物的非线性混合因素, 制约了混合像元分解精度的提升。针对高光谱图像数据的非线性结构, 提出一种基于测地线距离的正交投影端元提取算法, 将测地线距离引入端元单体提取过程, 利用正交投影方法逐个提取端元。为了降低测地线距离计算量, 在端元提取前先利用自动目标生成方法和无约束最小二乘法对原始高光谱数据进行数据约减。模拟和真实高光谱图像实验表明, 该方法能够表征光谱数据中非线性因素, 端元提取结果优于传统自动目标生成端元提取方法。
高光谱遥感图像 线性混合 端元提取 测地线距离 hyperspectral remote sensing images nonlinear mixing endmember extraction geodesic distance 
半导体光电
2023, 44(2): 307
作者单位
摘要
贵州师范大学地理与环境科学学院, 贵州 贵阳 550025
喀斯特山区因地形复杂、 地表破碎等特点使得遥感影像中阴影、 混合像元及光谱变异现象普遍存在, 传统基于多光谱遥感的像元二分法(DPM)在光谱变异和阴影显著的区域难以准确的对喀斯特石漠化(KRD)信息进行提取。 采用高光谱遥感的混合像元分解技术可将复杂的混合像元分解为纯净的地物光谱与各地物光谱对应的混合比例, 为复杂山区获取更高精度的石漠化信息提供可能。 然而, 由于光照、 环境及大气等诸多因素的变化会引起端元发生不同程度变异, 导致在混合像元分解过程中出现显著的误差, 其次要从地形复杂、 地表异质性强的山区影像上直接获取地物纯净光谱建立用于应对光谱变异的光谱库极其困难。 因此, 如何在这种情况下应对光谱变异和地形效应, 获取有效、 准确的对石漠化信息进行提取是当前研究的重点。 针对以上问题, 采用通过模拟由光照条件造成的地物反射率变化, 并考虑每个波长间隔光谱变异情况的广义线性混合模型(GLMM), 以减轻喀斯特地区石漠化信息提取过程中光谱变异与地形效应的影响。 首先, 从GF-5高光谱影像中提取喀斯特地区主要地物(植被、 裸岩、 裸土)的典型代表性光谱, 然后基于提取的地物光谱模拟不同光照下每个像元光谱的变异情况, 选择最适合的光谱组合对像元进行分解, 得到最优的解混效果。 为了验证方法的可靠性, 利用高分辨率影像目视解译的结果作为参考对方法预测结果进行验证, 同时选择未考虑端元变异的全限制最小二乘法(FCLSU)和DPM进行对比。 结果表明, 在地形高度复杂的喀斯特山区, 考虑阴影、 混合像元及光谱变异是必要的, GLMM在石漠化信息提取中总精度达到了84.89%, 明显高于其他两种方法的59.68%和67.34%。 通过对光照区和阴影区分别进行精度检验, 发现GLMM在光照区与阴影区有着相似的精度表现, 而另外两者则差异较大, 阴影区明显低于光照区。 这反映GLMM能较为有效地减轻地形效应的影响, 对喀斯特石漠化信息提取的精度有一定提升。
光谱混合分解 广义线性混合模型 石漠化信息提取 地形效应 Spectral mixed decomposition Generalized linear mixed model Rocky desertification information extraction Terrain effect 
光谱学与光谱分析
2022, 42(7): 2269
作者单位
摘要
1 空军工程大学 信息与导航学院,陕西 西安 710077
2 重庆工程学院 软件学院,重庆 400056
高光谱图像有效压缩对于实现实时传输具有重要意义。本文将光谱线性分解应用于高光谱图像的高效压缩中,根据高光谱图像的线性混合模型,将高光谱数据分解为端元与丰度的乘积,编码端对端元与丰度进行必要的数据处理,然后分别进行JPEG-LS无损压缩,形成输出码流数据。解码端利用最终解码后的端元与丰度相乘来重建原始图像,探讨了量化步长对率失真性能的影响。仿真实验结果表明,该方法能够取得一定的压缩性能。
高光谱图像 线性混合模型 端元提取 hyperspectral images linear mixed model endmember extraction 
太赫兹科学与电子信息学报
2021, 19(6): 1075
作者单位
摘要
国防科技大学 电子对抗学院 脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
针对高光谱图像像元中端元物质非线性混合的特点, 借鉴生物群智能现象, 提出一种基于双鸟群优化的高光谱图像非线性解混算法。为进一步提高非线性解混算法的精度, 通过模拟鸟群中觅食、警惕以及飞行等行为得到非线性问题的最优解。算法通过双鸟群的迭代优化来交替更新目标函数中的最优解以及非线性模型参数, 最终得到高光谱图像端元丰度的最佳估计。仿真实验和光谱数据实验结果表明: 双鸟群优化算法迭代收敛, 能克服局部最小值问题; 相比于同类算法, 该算法解混结果的丰度重建误差、平均光谱角距离和像元重建误差3项指标均较小, 该算法解混精度高, 像元重构效果好, 能有效提高高光谱图像非线性解混的精度。
高光谱图像 光谱解混 线性混合 群智能优化 双鸟群优化 hyperspectral image spectral unmixing nonlinear mixing swarm intelligence optimization double-bird flock optimization 
应用光学
2019, 40(6): 1059
作者单位
摘要
1 天津工业大学 电子与信息工程学院,天津 300387
2 天津商业大学 信息工程学院,天津 300134
在高阶非线性混合模型的基础上,提出一种多目标高光谱图像解混算法,解决传统方法受高光谱数据异常值影响而解混精度不高的问题。该算法以重构误差与光谱角分布为目标函数建立优化模型,并同时优化两目标函数以减少数据异常值对模型求解的影响,使解混结果在两个评价指标上得到提升; 最后采用差分搜索算法求解多目标优化模型,解决梯度类优化方法易陷入局部极值的问题,从而进一步提升解混精度。实验结果表明,文中算法与传统高光谱解混算法相比,具有更精确的端元丰度估计结果和更高的解混精度。
高光谱图像 线性混合模型 多目标高光谱解混 仿生智能优化 差分搜索算法 hyperspectral images multi-linear mixing model multi-objective hyperspectral unmixing bionic intelligence optimization difference search algorithm 
红外与激光工程
2019, 48(10): 1026002
作者单位
摘要
1 重庆工程学院软件学院, 重庆 400056
2 陆军军医大学(第三军医大学)生物医学工程与影像医学系, 重庆 400038
3 铜陵学院电气工程学院, 安徽铜陵 244061
为了实现高光谱图像的有效压缩采样与重构, 对分布式压缩采样的高光谱数据应用线性混合模型进行重构。首先, 在图像采集阶段, 针对高光谱图像的空谱特性, 应用分布式压缩采样策略对高光谱数据进行采集;在数据重构阶段, 应用高光谱图像的线性混合模型假设, 先对压缩数据进行端元数目的估计, 再利用估计的端元数来估计丰度矩阵, 根据端元特征信号的稀疏性质提取端元矩阵, 从而重构出原始的高光谱数据, 抛弃了压缩感知重构算法中高计算复杂性的欠定问题求解。实验结果表明:在压缩采样数据为总数据的 20%时, 重构的平均信噪比比压缩投影主成分分析算法提高了 15 dB以上, 同时该方法还便于获得端元和丰度信息。所设计的压缩感知方案采样方式简单, 重构速度快、精度高, 可应用于星载或机载的高光谱压缩感知成像。
分布式压缩感知 高光谱图像 线性混合模型 解混 distributed compressed sensing, hyperspectral imag 
红外技术
2019, 41(8): 758
杨斌 1,2,3,*王斌 1,2,3吴宗敏 4
作者单位
摘要
1 复旦大学 电磁波信息科学教育部重点实验室, 上海 200433
2 北京师范大学 地表过程与资源生态国家重点实验室, 北京 100875
3 复旦大学 信息学院智慧网络与系统研究中心, 上海 200433
4 复旦大学 数学科学学院, 上海 200433
高光谱遥感图像的非线性光谱解混能弥补线性方法难以解释复杂场景中非线性混合效应的不足, 而双线性混合模型及算法是其研究的热点.提出了一种基于双线性混合模型几何特性的光谱解混算法.通过将模型中的非线性混合项表示为一个融合了共同非线性效应的额外端点的线性贡献, 使复杂的双线性混合模型求解转化为简单的线性解混问题.然后结合传统的线性解混算法直接迭代估计正确的丰度.模拟和真实遥感图像数据的实验结果表明, 与其它相关解混方法相比, 该算法能较好地克服共线性效应以及拟合优化过多参数对双线性混合模型求解造成的不利影响, 同时提高了解混的精度和速度.
高光谱遥感 非线性光谱解混 线性混合模型 丰度估计 单形体 hyperspectral remote sensing nonlinear spectral unmixing bilinear mixture model abundance estimation simplex 
红外与毫米波学报
2018, 37(5): 631
作者单位
摘要
1 天津大学精密仪器与光电子工程学院, 天津 300072
2 中国医学科学院生物医学工程研究所, 天津 300192
基于二组分混和食用油的吸收系数是各自组分吸收系数按照掺杂比例的线性组合的假设以及朗伯-比尔吸收机理, 提出并推导了二组分食用混合油的线性混合数学模型。 该数学模型可根据相同厚度的两种原料油和其二组分混合油对相同光源的吸收光强变化计算出混合油的组分比例。 根据误差理论, 利用全微分公式分析了组分比例计算值的误差, 表明通过选择使两种原料油的透射光强和吸光度差值的乘积较大的波长位置, 可以优选出检测波长。 搭建了可见-近红外光谱检测系统, 利用花生油掺杂玉米油、 花生油掺杂大豆油和玉米油掺杂大豆油三种混合油对模型进行了验证。 结果表明, 该模型对掺杂10%以上的混合油的成分比例计算值和实际值的相对误差在5%以内, 相关系数分别达到0.999 4, 0.999 7和0.999 3, 标准误差分别为0.006 9, 0.005 1和0.007 6, 并证实本研究的波长选取方法是合理的。 此外, 对3种按同样比例组合的、 未混合的分立油样本进行了检测, 计算组合比的相对误差也可控制在10%以内, 同时揭示入射光源的平行度和待测装置的垂直度对检测精度有一定影响。 试验证明, 不同于传统的光谱结合化学计量学的检测方法, 本方法可以仅通过检测原料油和混合油在选定波长上的吸收光强即可准确计算得到掺杂比例。
线性混合 朗伯-比尔定律 掺杂 吸收光谱 定量分析 Linear mixing The Lambert-Beer’s Law Adulteration Absorption spectrum Quantitative analysis 
光谱学与光谱分析
2017, 37(8): 2486
杨斌 1,2,3,*王斌 1,2,3
作者单位
摘要
1 复旦大学 电磁波信息科学教育部重点实验室, 上海 200433
2 北京师范大学 地表过程与资源生态国家重点实验室, 北京 100875
3 复旦大学 信息学院智慧网络与系统研究中心, 上海 200433
介绍了近年来非线性光谱解混方法的发展状况, 主要包括矿物沙地地区的紧密混合模型和植被覆盖区域的多层次混合模型, 以及基于这些模型的非线性解混算法和利用核函数、流形学习等方法的数据驱动非线性光谱解混算法及非线性探测算法.最后分析总结了现有非线性解混模型与算法的优势与缺陷及未来的研究趋势.
高光谱遥感 混合像元 非线性光谱解混 Hapke模型 线性混合模型 核方法 流形学习 hyperspectral remote sensing mixed pixel nonlinear spectral unmixing Hapke model bilinear mixture model kernel method manifold learning 
红外与毫米波学报
2017, 36(2): 173

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!