半导体光电, 2019, 40 (4): 480, 网络出版: 2019-09-20   

非晶铟镓锌氧化物薄膜晶体管的制备及其光敏特性研究

Fabrication and Photosensitive Properties of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors
作者单位
1 东南大学 1. 成贤学院 电子与计算机工程学院, 南京 210088
2 2. 毫米波国家重点实验室, 南京 210096
3 MEMS教育部重点实验室, 南京 210096
摘要
基于射频磁控溅射法制备了以非晶铟镓锌氧化物(a-IGZO)作为有源层的底栅顶接触式薄膜场效应晶体管(Thin Film Transistor, TFT), 其长/宽比为300μm/100μm。研究了该器件在无激光和在三种不同波长激光照射下的光敏特性。实验表明, 器件在波长分别为660、450和405nm三种激光照射下的阈值电压Vth分别为4.2、2.5和0V, 均低于无激光时的4.3V, 且器件的阈值电压随激光波长减小单调降低, 此外, 随着激光波长的下降, “明/暗”电流比K由0.54上升到8.06(在VGS=6V且VDS=5V条件下), 光敏响应度R由0.33μA/mW上升到4.88μA/mW, 可见激光波长越短, 可获得更强的光电效应, 光灵敏度也更高, 该效应表明该器件在光电探测等领域具有广阔的应用前景。
Abstract
Amorphous indium-gallium-zinc-oxide (a-IGZO) with a length of 300μm and a width of 100μm was fabricated by RF magnetron sputtering. A thin film transistor (TFT) with a structure of Si(P)/La2O3/a-IGZO/TC (20nm Ti, 80nm Au) was fabricated. The optoelectronic characteristics of the device were studied by probe method without laser irradiation and with laser irradiation of three different wavelengths. The experimental results show that the threshold voltage (Vth) of the device irradiated by 660, 450 and 405nm lasers is 4.2, 2.5 and 0V, respectively, lower than the Vth without laser, the smaller the wavelength is, the lower Vth is. With the decrease of wavelength, its current ratio (K) of photocurrent to current in dark increases from 0.54 to 8.06, and the responsivity (R) increases from 0.33μA/mW to 4.88μA/mW when VGS=6V and VDS=5V. It shows that the photoelectric effect is stronger and the optical sensitivity is higher with the smaller wavelength of the visible laser. This effect indicates that the device has broad application prospects in the field of photoelectric detection.
参考文献

[1] 方庆清. 基于SmCo基永磁薄膜构建的MEMS器件中的几个关键技术问题[C]// 中国功能新材料学术论坛暨全国电磁材料及器件学术会议, 2012.

    Fang Qingqing. Several key technical issues in the construction of EMS devices based on SmCo-based permanent magnet thin films[C]// China Academic Forum on Functional New Materials and National Academic Conf. on Electromagnetic Materials and Devices, 2012.

[2] Lien A, Lo C C, Chiang C L, et al. Thermal stability of amorphous InGaZnO thin-film transistors with different oxygen-contained active layers[J]. J. of Display Technol., 2015, 11(7): 610-614.

[3] Ha T J, Cho W J, Chung H B, et al. A comparison of photo-induced hysteresis between hydrogenated amorphous silicon and amorphous IGZO thin-film transistors[J]. J. Nanosci. Nanotechnol., 2015, 15(9): 6695-6698.

[4] Park J C, Cho I T, Cho E S, et al. Comparative study of ZrO2 and HfO2 as a high-k dielectric for amorphous InGaZnO thin film transistors[J]. J. of Nanoelectronics & Optoelectronics, 2014, 9(1): 67-70.

[5] Hanh N H, Jang K, Yi J. Fabrication of InGaZnO nonvolatile memory devices at low temperature of 150℃ for applications in flexible memory displays and transparency coating on plastic substrates[J]. J. of Nanoscience & Nanotechnol., 2016, 16(5): 4860.

[6] Tsay C Y, Yan T Y. Solution processed amorphous InGaZnO semiconductor thin films and transistors[J]. J. of Physics & Chemistry of Solids, 2014, 75(1): 142-147.

[7] Chung J M, Zhang X, Shang F, et al. Enhancement of a-IGZO TFT device performance using a clean interface process via etch-stopper nano-layers[J]. Nanoscale Research Lett., 2018, 13(1): 164.

[8] Hsieh H H, Wu C H, Chien C W, et al. Influence of channel-deposition conditions and gate insulators on performance and stability of top-gate IGZO transparent thin-film transistors[J]. J. of the Society for Information Display, 2012, 18(10): 796-801.

[9] Oh H, Yoon S M, Ryu M K, et al. Transition of dominant instability mechanism depending on negative gate bias under illumination in amorphous In-Ga-Zn-O thin film transistor[J]. Appl. Phys. Lett., 2011, 98(3): 263513.

[10] Chen T C, Chang T C, Hsieh T Y, et al. Light-induced instability of an InGaZnO thin film transistor with and without SiOx passivation layer formed by plasma-enhanced-chemical-vapor-deposition[J]. Appl. Phys. Lett., 2010, 97(19): 192103.

[11] 崔兴美, 陈 笋, 丁士进. 非晶In-Ga-Zn-O沟道薄膜晶体管存储器研究[J]. 半导体技术, 2013, 38(7): 481-486.

    Cui Xingmei, Chen Sun, Ding Shijin. Research on amorphous In-Ga-Zn-O channel thin film transistor memory[J]. Semiconductor Technol., 2013, 38(7): 481-486.

[12] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 第4版. 北京: 国防工业出版社, 2008.

    Liu Enke, Zhu Bingsheng, Luo Jinsheng. Semiconductor Physics[M]. 4th Edi. Beijing: National Defence Industry Press, 2008.

[13] Pierrent R F. Semiconductor Device Physics[M]. Reading, MA: AddisonWesley,1996.

[14] Hamilton M C, Martin S, Kanicki J. Thin-film organic polymer phototransistors[J]. IEEE Trans. on Electron. Devices, 2004, 51(6): 877-885.

陆清茹, 李帆, 黄晓东. 非晶铟镓锌氧化物薄膜晶体管的制备及其光敏特性研究[J]. 半导体光电, 2019, 40(4): 480. LU Qingru, LI Fan, HUANG Xiaodong. Fabrication and Photosensitive Properties of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors[J]. Semiconductor Optoelectronics, 2019, 40(4): 480.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!