发光学报, 2016, 37 (2): 192, 网络出版: 2016-03-22   

原子层沉积AlOx薄膜对单晶硅太阳能电池钝化机制的影响

Passivation Mechanism of AlOx Thin Film Fabricated on c-Si by Atomic Layer Deposition
作者单位
1 大连理工大学 物理与光电工程学院,辽宁 大连116024
2 长春理工大学 理学院,吉林 长春130022
摘要
采用原子层沉积设备在p型单晶制绒硅上制备了不同厚度的AlOx薄膜。通过研究AlOx薄膜厚度对样品的反射率、少数载流子寿命以及电容-电压特性的影响,发现沉积32 nm的AlOx薄膜样品具有最好的钝化效果。另外,通过计算Si/AlOx界面处的固定电荷密度和缺陷态密度,发现32 nm 厚的AlOx薄膜样品具有最低的缺陷态密度。系统研究了单晶硅材料的表面钝化机制,给出了影响样品载流子寿命的根本来源。
Abstract
AlOx thin films with various thicknesses were fabricated on p-type textured crystalline silicon wafers through atomic layer deposition. The optical and electrical properties of AlOx thin films were significantly improved by adjusting their thicknesses. The reflectance of AlOx thin films decreased from 10.12% to 0.96% with increasing thickness in a wide spectral range from 350 to 1 000 nm. The passivation effect of AlOx was discussed by using quasi steady state photo conductance (QSSPC) and capacitance-voltage (C-V) measurement. The AlOx thin film with the thickness of 32 nm shows the highest τeff and lowest interfacial state density (Dit). The origin of the polarity changing of the equivalent oxide charge (Qf) for the annealed AlOx thin film was also investigated.
参考文献

[1] POODT P, LANKHORST A, ROOZEBOOM F, et al.. High speed spatial atomic layer deposition of aluminum oxide layers for solar cell passivation [J]. Adv. Mater., 2010, 22:3564-3567.

[2] QUEISSER H J, HALLER E E. Defects in semiconductors: some fatal, some vital [J]. Science, 1998, 281:945-950.

[3] HOEX B, SCHMIDT J, POHL P. Silicon surface passivation by atomic layer deposited Al2O3 [J]. J. Appl. Phys., 2008, 104:044903.

[4] KERR M J, CUEVAS A. Very low bulk and surface recombination in oxidized silicon wafers [J]. Sci. Technol., 2002, 17:35-38.

[5] OLIBET S, VALLAT-SAUVAIN E, BALLIF C. Model for a-Si∶H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds [J]. Phys. Rev. B, 2007, 76:035326.

[6] LAUINGER T, SCHMIDT J, ABERLE A G, et al.. Record low surface recombination velocities on 1 omega cm p-silicon using remote plasma silicon nitride passivation [J]. Appl. Phys. Lett., 1996, 68:1232.

[7] WERNER F, VEITH B, ZIELKE D, et al.. Electronic and chemical properties of the c-Si/Al2O3 interface [J]. J. Appl. Phys., 2011, 109:113701.

[8] SCHMIDT J, MERKLE A, BRENDEL R, et al.. Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3 [J]. Prog. Photovolt: Res. Appl., 2008, 16:461.

[9] BENICK J, HOE X B, VAN DE SANDEN M C M, et al.. High efficiency n-type Si solar cells on Al2O3-passivated boron emitters [J]. Appl. Phys. Lett., 2008, 92:253504.

[10] LI T T A, CUEVAS A. Role of hydrogen in the surface passivation of crystalline silicon by sputtered aluminum oxide [J]. Prog. Photovolt: Res. Appl., 2011, 19:320-325.

[11] KELLY P J, ARNELL R D. Magnetron sputtering: a review of recent developments and applications [J].Vacuum, 2000, 56:159-172.

[12] DINGEMANS G, KESSELS W M M. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells [J]. J. Vac. Sci. Technol. A, 2012, 30:040802.

[13] AGOSTINELLI G, DELABIE A, VITANOV P, et al..Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge [J]. Sol. Energy Mater. Sol. Cells, 2006, 90:3438-3443.

[14] GRONER M D, GEORGE S M, Mclean R S, et al.. Gas diffusion barriers on polymers using Al2O3 atomic layer deposition [J]. Appl. Phys. Lett., 2006, 88:051907.

[15] MENNA P, Di FRANCIA G, LA FERRARA V. Porous silicon in solar cells: a review and a description of its application as an AR coating [J]. Sol. Energy Mater. Sol. Cells, 1995, 37:13-24.

[16] HOEX B, HEIL S B S, LANGEREIS E, et al.. Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3 [J]. Appl. Phys. Lett., 2006, 89:042112.

[17] CHO M J, PARK H B, PARK J, et al.. Thermal annealing effects on the structural and electrical properties of HfO2/Al2O3 gate dielectric stacks grown by atomic layer deposition on Si substrates [J]. J. Appl. Phys., 2003, 94:2563.

[18] SHIN B, WEBER J R, LONG R D, et al.. Origin and passivation of fixed charge in atomic layer deposited aluminum oxide gate insulators on chemically treated InGaAs substrates [J]. Appl. Phys. Lett., 2010, 96:152908.

[19] JOHNSON R S, LICOVSKI G, BAUMVOL I. Physical and electrical properties of noncrystalline Al2O3 prepared by remote plasma enhanced chemical vapor deposition [J]. J. Vac. Sci. Technol. A, 2001,19:1353.

[20] BANSAL A, SRIVASTAVA P, SINGH B R. On the surface passivation of c-silicon by RF sputtered Al2O3 for solar cell application [J]. J. Mater. Sci.: Mater. Electron., 2015, 26:639-645.

[21] KONOFAOS N. Electrical characterisation of SiON/n-Si structures for MOS VLSI electronics [J]. Microelectron., 2004, 35:421-425.

[22] LIU Y H, ZHU L Q, GUO L Q, et al.. Surface passivation performance of atomic-layer-deposited Al2O3 on p-type silicon substrates [J]. J. Mater. Sci. Technol., 2014, 30:835-838.

张炳烨, 谢洪丽, 方铉, 刘爱民. 原子层沉积AlOx薄膜对单晶硅太阳能电池钝化机制的影响[J]. 发光学报, 2016, 37(2): 192. ZHANG Bing-ye, XIE Hong-li, FANG Xuan, LIU Ai-min. Passivation Mechanism of AlOx Thin Film Fabricated on c-Si by Atomic Layer Deposition[J]. Chinese Journal of Luminescence, 2016, 37(2): 192.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!