半导体光电, 2020, 41 (1): 99, 网络出版: 2020-04-13   

NLDMOS器件性能优化及分析

Performance Optimization and Analysis of NLDMOS Devices
作者单位
1 中国科学院大学 微电子学院, 北京 100029
2 中芯国际集成电路制造有限公司, 天津 300385
摘要
提出一种改善n型横向双扩散金属氧化物半导体(NLDMOS)器件性能的工艺方法。该方法基于某公司0.18μm标准工艺流程, 通过在NLDMOS的共源处增加一道离子注入, 引出衬底电荷, 以优化NLDMOS器件的击穿电压(Vb)与比导通电阻(Rsp)。选择不同的注入离子浓度与快速热退火时间, 研究了器件的Vb与Rsp变化。由于离子激活效率不足, 单纯增加20%的注入离子浓度, 器件的耐压性能提升极小, 采用增加20%注入离子浓度结合延长20s快速热退火时间的方法, NLDMOS器件的Vb提高约2.7%, 同时Rsp仅增加0.9%左右。
Abstract
A new process for improving the performance of n-LDMOS devices is proposed based on XXXs 0.18μm standard process flow. Adding an ion implantation at the common source of NLDMOS can extract the substrate charge and optimize the breakdown voltage (BV) and specific on-resistance (Rsp) of the NLDMOS devices. In this paper, by selecting different implant ion concentrations and rapid thermal annealing time, changes of BV and Rsp of the devices are studied. Because the ion activation efficiency is insufficient, simply increasing the implant ion concentration by 20%, the withstand voltage performance of the device has less improvement. By combining 20% increase in implant ion concentration with 20s rapid thermal annealing method, the BV of the NLDMOS device is increased by about 2.7%, while the Rsp is increased by only about 0.9%.
参考文献

[1] 陈 铭. BCD(Bipolar-CMOS-DMOS)工艺技术的发展、现状及展望[J]. 集成电路应用, 2014(7): 24-28.

    Chen Ming. Development, status and prospect of BCD(Bipolar-CMOS-DMOS) technology[J]. Integrated Circuit Application, 2014(7): 24-28.

[2] 杨银堂, 朱海刚. BCD集成电路技术的研究与进展[J]. 微电子学, 2006, 36(3): 315-319.

    Yang Yintang, Zhu Haigang. State-of-the-art of BCD technology and its developing trends[J]. 2006, 36(3): 315-319.

[3] Park I Y, Choi Y K, Ko K Y, et al. BD180-a new 0.18μm BCD (Bipolar-CMOS-DMOS) technology from 7V to 60V[C]// IEEE 20th Inter. Symp. on Power Semiconductor Devices and ICs, 2008.

[4] Tsung Y H, Chien H H, Chih F H, et al. Demonstration of a HV BCD technology with LV CMOS process[C]// 27th Inter. Symp. on Power Semiconductor Devices & ICs, 2015: 193-196.

[5] Michael T M G, Hu Y H, DEB K P, et al. Design and optimization of 40V, 0.18μm versatile HVLDMOS device with DOE[C]// IEEE Inter. Conf. on Semiconductor Electron., 2008: 1-5.

[6] Amato M, Rumennik V. Comparison of lateral and vertical DMOS specific on-resistance[C]// Inter. Electron Devices Meeting, 1985, 31: 736-739.

[7] 陈轶群, 陈佳旅, 蒲贤勇. 功率NLDMOS电学安全工作区的版图设计优化[J]. 半导体技术, 2019(8): 623-627.

    Chen Yiqun, Chen Jialv, Pu Xianyong. Optimization of workspace layout design of power NLDMOS electrical security[J]. Semiconductor Technology, 2019(8): 623-627.

[8] Min Y, Ru H, Xing Z. Atomistic simulation of RTA annealing for shallow junction formation characterizing both BED and TED[C]// Inter. Conf. on Simulation of Semiconductor Processes and Devices, 2002: 123-126.

[9] Ankit K, Emita Y H, Vasanth K, et al. Design of a low on resistance high voltage(<100V) novel 3DNLDMOS with side STI and single P-top layer based on 0.18μm BCD process technology[C]// 8th NMDC, 2013: 78-80.

[10] 冯喆韻, 马千成, 汪 铭. 0.18μm完全隔离型低导通态电阻(Low Ron)NLDMOS研究[J]. 电子与封装, 2016, 16(7): 39-43.

    Feng Zheyun, Ma Qiancheng, Wang Ming. Studies of 0.18μm fully isolated Low Ron NLDMOS[J]. Electronics and Packaging, 2016, 16(7): 39-43.

[11] Ko K Y, Park I Y, Choi Y K, et al. BD180LV-0.18μm BCD technology with best-in-class LDMOS from 7V to 30V[C]// 22nd Inter. Symp. on Power Semiconductor Devices & ICs, 2010: 71-74.

[12] Pendharkar S, Pan R, Tamura T, et al. 7 to 30V state-of-art power device implantation in 0.25μm LBC7 BiCMOS-DMOS process technology[C]// 16th Inter. Symp. on Power Semiconductor Devices & ICs, 2004: 419-422.

[13] Riccardi D, Causio A, Filippi I, et al. BCD8 from 7V to 70V: a new 0.18μm technology platform to address the evolution of applications towards smart power ICs with high logic contents[C]// 19th International Symp. on Power Semiconductor Devices and ICs, 2007: 73-76.

[14] Shirai K, Yonemura K, Watanabe K, et al. Ultra-low on-resistance LDMOS implementation in 0.13μm CD and BiCD process technologies for analog power ICs[C]// IEEE 21st Inter. Symp. on Power Semiconductor Devices & ICs, 2009.

[15] Campbell S A. 微纳尺度制造工程[M]. 严利人, 张 伟, 译. 北京: 电子工业出版社, 2011.

    Campbell S A. Micro-nano Scale Manufacturing Engineering[M]. Yan Liren, Zhang Wei, Transl. Beijing: Electronics Industry Press, 2011.

[16] 张汝京. 纳米集成电路制造工艺[M]. 北京: 清华大学出版社, 2014: 298-307.

    Zhang Rujing. Nanometer Integrated Circuit Manufacturing Process[M]. Beijing: Tsinghua University Press, 2014: 298-307.

李维杰, 王兴, 王云峰, 李洋, 孟丽华. NLDMOS器件性能优化及分析[J]. 半导体光电, 2020, 41(1): 99. LI Weijie, WANG Xing, WANG Yunfeng, LI Yang, MENG Lihua. Performance Optimization and Analysis of NLDMOS Devices[J]. Semiconductor Optoelectronics, 2020, 41(1): 99.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!